Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon chemists eye improved thin films with metal substitution

22.07.2014

Solution-based inorganic process could drive more efficient electronics and solar devices

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use in electronics and alternative energy devices.

A paper describing the approach is highlighted on the cover of the July 21 issue of the journal Inorganic Chemistry, which draws the most citations of research in the inorganic and nuclear chemistry fields. The paper was chosen by the American Chemical Society journal as an ACS Editor's Choice for its potential scientific and broad public interest when it initially published online.

The process described in the paper represents a new approach to transmetalation, in which individual atoms of one metal complex -- a cluster in this case -- are individually substituted in water. For this study, Maisha K. Kamunde-Devonish and Milton N. Jackson Jr., doctoral students in the Department of Chemistry and Biochemistry, replaced aluminum atoms with indium atoms.

The goal is to develop inorganic clusters as precursors that result in dense thin films with negligible defects, resulting in new functional materials and thin-film metal oxides. The latter would have wide application in a variety of electronic devices.

"Since the numbers of compounds that fit this bill is small, we are looking at transmetelation as a method for creating new precursors with new combinations of metals that would circumvent barriers to performance," Kamunde-Devonish said.

Components in these devices now use deposition techniques that require a lot of energy in the form of pressure or temperature. Doing so in a more green way -- reducing chemical waste during preparation -- could reduce manufacturing costs and allow for larger-scale materials, she said.

"In essence," said co-author Darren W. Johnson, a professor of chemistry, "we can prepare one type of nanoscale cluster compound, and then step-by-step substitute out the individual metal atoms to make new clusters that cannot be made by direct methods. The cluster we report in this paper serves as an excellent solution precursor to make very smooth thin films of amorphous aluminum indium oxide, a semiconductor material that can be used in transparent thin-film transistors."

Transmetalation normally involves a reaction done in organic chemistry in which the substitution of metal ions generates new metal-carbon bonds for use in catalytic systems and to synthesize new metal complexes.

"This is a new way to use the process," Kamunde-Devonish said, "Usually you take smaller building blocks and put them together to form a mix of your basic two or three metals. Instead of building a house from the ground up, we're doing some remodeling. In everyday life that happens regularly, but in chemistry it doesn't happen very often. We've been trying to make materials, compounds, anything that can be useful to improve the processes to make thin films that find application in a variety of electronic devices."

The process, she added, could be turned into a toolbox that allows for precise substitutions to generate specifically desired properties. "Currently, we can only make small amounts," she said, "but the fact that we can do this will allow us to get a fundamental understanding of how this process happens. The technology is possible already. It's just a matter of determining if this type of material we've produced is the best for the process."

###

The research was funded primarily through the National Science Foundation-funded Center for Sustainable Materials Chemistry (NSF grant CHE-1102637). It also was supported by the NSF-supported (grant CHE-0923589) NMR Spectroscopy Facility for analyses work done in the Center for Advanced Materials Characterization in Oregon (CAMCOR) located in the UO's Lorry I. Lokey Laboratories.

Co-authors with Kamunde-Devonish, Jackson and Johnson were former UO doctoral student Zachary L. Mensinger, now at the University of Minnesota at Morris, and Lev N. Zakharov of CAMCOR.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities. 


Sources: Maisha K. Kamunde-Devonish, doctoral student, 541-346-7653, maisha@uoregon.edu and Darren W. Johnson, professor of chemistry, 541-346-1695, dwj@uoregon.edu

Links:

The paper (Transmetalation of Aqueous Inorganic Clusters: A Useful Route to the Synthesis of Heterometallic Aluminum and Indium Hydroxo—Aquo Clusters): http://pubs.acs.org/doi/abs/10.1021/ic403121r

Johnson faculty page: http://chemistry.uoregon.edu/fac.html?darren_johnson

Department of Chemistry and Biochemistry: http://chemistry.uoregon.edu/

CAMCOR: http://camcor.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_RIGE

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | Eurek Alert!

Further reports about: chemists compounds indium inorganic materials precursors

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>