Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon chemists eye improved thin films with metal substitution

22.07.2014

Solution-based inorganic process could drive more efficient electronics and solar devices

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use in electronics and alternative energy devices.

A paper describing the approach is highlighted on the cover of the July 21 issue of the journal Inorganic Chemistry, which draws the most citations of research in the inorganic and nuclear chemistry fields. The paper was chosen by the American Chemical Society journal as an ACS Editor's Choice for its potential scientific and broad public interest when it initially published online.

The process described in the paper represents a new approach to transmetalation, in which individual atoms of one metal complex -- a cluster in this case -- are individually substituted in water. For this study, Maisha K. Kamunde-Devonish and Milton N. Jackson Jr., doctoral students in the Department of Chemistry and Biochemistry, replaced aluminum atoms with indium atoms.

The goal is to develop inorganic clusters as precursors that result in dense thin films with negligible defects, resulting in new functional materials and thin-film metal oxides. The latter would have wide application in a variety of electronic devices.

"Since the numbers of compounds that fit this bill is small, we are looking at transmetelation as a method for creating new precursors with new combinations of metals that would circumvent barriers to performance," Kamunde-Devonish said.

Components in these devices now use deposition techniques that require a lot of energy in the form of pressure or temperature. Doing so in a more green way -- reducing chemical waste during preparation -- could reduce manufacturing costs and allow for larger-scale materials, she said.

"In essence," said co-author Darren W. Johnson, a professor of chemistry, "we can prepare one type of nanoscale cluster compound, and then step-by-step substitute out the individual metal atoms to make new clusters that cannot be made by direct methods. The cluster we report in this paper serves as an excellent solution precursor to make very smooth thin films of amorphous aluminum indium oxide, a semiconductor material that can be used in transparent thin-film transistors."

Transmetalation normally involves a reaction done in organic chemistry in which the substitution of metal ions generates new metal-carbon bonds for use in catalytic systems and to synthesize new metal complexes.

"This is a new way to use the process," Kamunde-Devonish said, "Usually you take smaller building blocks and put them together to form a mix of your basic two or three metals. Instead of building a house from the ground up, we're doing some remodeling. In everyday life that happens regularly, but in chemistry it doesn't happen very often. We've been trying to make materials, compounds, anything that can be useful to improve the processes to make thin films that find application in a variety of electronic devices."

The process, she added, could be turned into a toolbox that allows for precise substitutions to generate specifically desired properties. "Currently, we can only make small amounts," she said, "but the fact that we can do this will allow us to get a fundamental understanding of how this process happens. The technology is possible already. It's just a matter of determining if this type of material we've produced is the best for the process."

###

The research was funded primarily through the National Science Foundation-funded Center for Sustainable Materials Chemistry (NSF grant CHE-1102637). It also was supported by the NSF-supported (grant CHE-0923589) NMR Spectroscopy Facility for analyses work done in the Center for Advanced Materials Characterization in Oregon (CAMCOR) located in the UO's Lorry I. Lokey Laboratories.

Co-authors with Kamunde-Devonish, Jackson and Johnson were former UO doctoral student Zachary L. Mensinger, now at the University of Minnesota at Morris, and Lev N. Zakharov of CAMCOR.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities. 


Sources: Maisha K. Kamunde-Devonish, doctoral student, 541-346-7653, maisha@uoregon.edu and Darren W. Johnson, professor of chemistry, 541-346-1695, dwj@uoregon.edu

Links:

The paper (Transmetalation of Aqueous Inorganic Clusters: A Useful Route to the Synthesis of Heterometallic Aluminum and Indium Hydroxo—Aquo Clusters): http://pubs.acs.org/doi/abs/10.1021/ic403121r

Johnson faculty page: http://chemistry.uoregon.edu/fac.html?darren_johnson

Department of Chemistry and Biochemistry: http://chemistry.uoregon.edu/

CAMCOR: http://camcor.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_RIGE

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | Eurek Alert!

Further reports about: chemists compounds indium inorganic materials precursors

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>