Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oldest species of a marine mollusc discovered

22.02.2011
An international research team, with Spanish participation, has discovered a new species of mollusc, Polyconites hadriani, in various parts of the Iberian Peninsula. The researchers say this species, which is the oldest in its genus, adapted to the acidification of the oceans that took place while it was in existence. This process could now determine the evolution of modern marine systems.

The new species Polyconites hadriani, which was discovered in 2007, has been crowned the oldest in the Polyconites genus of the family Polyconitidae (rudists), a kind of extinct sea mollusc. To date, scientists had thought that the oldest mollusc in this genus was Polyconites verneuili.

"P. hadriani is similar in shape to P. verneuili, but it is smaller (with a 30mm smaller diameter), and with a thinner calcite layer to its shell (around 3mm difference)", Eulàlia Gili, one of the authors of the study and a researcher at the Department of Geology of the Autonomous University of Barcelona (UAB), tells SINC.

The new species was found in several parts of the Iberian Peninsula - in the Maestrat basin, the Vasco-Cantábrica basin, to the south of the Lusitania basin and in the Cordillera Prebética mountain range, "where it accumulated in dense conglomerations along the banks of the carbonate marine platforms of the Lower Aptian period (114 million years ago)", says Gili.

"This recognition of P. hadriani resolves the lengthy uncertainty about the identity of these polyconitids of the Lower Aptian", the researcher says in the study, which has been published in the Turkish Journal of Earth Sciences.

Adaptation to acidification of the oceans

Gili says the Lower Aptian was a convulsive period, during which significant climate change took place. P. hadriani existed at the time when the first oceanic anoxic event of the Cretaceous took place (between 135 and 65 million years ago). This event was characterised by a "lack of oxygen on the seabed, which led to the mass burial of organic carbon and climate cooling".

"The thicker calcite layer of the shell of this new species compared with that of its predecessor (of the Horiopleura genus), could have helped it adapt better to life in colder waters, which were more acidic due to the increased solubility of atmospheric CO2", the geologist explains.

The researcher adds: "The response of these rudists to ocean acidification could apply to the future evolution of today's marine ecosystems, above all among those kinds of organisms that form their shells or skeletons from calcium carbonate".

Full bibliographic information
Peter W. Skelton, Eulàlia Gili, Telm Bover-Arnal, Ramon Salas, Josep Anton Moreno-Edmar. "A New Species of Polyconites from the Lower Aptian of Iberia and the Early Evolution of Polyconitid Rudists". Turkish Journal of Earth Sciences, Vol. 19, 2010. doi:10.3906/yer-0901-7

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>