Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oldest species of a marine mollusc discovered

22.02.2011
An international research team, with Spanish participation, has discovered a new species of mollusc, Polyconites hadriani, in various parts of the Iberian Peninsula. The researchers say this species, which is the oldest in its genus, adapted to the acidification of the oceans that took place while it was in existence. This process could now determine the evolution of modern marine systems.

The new species Polyconites hadriani, which was discovered in 2007, has been crowned the oldest in the Polyconites genus of the family Polyconitidae (rudists), a kind of extinct sea mollusc. To date, scientists had thought that the oldest mollusc in this genus was Polyconites verneuili.

"P. hadriani is similar in shape to P. verneuili, but it is smaller (with a 30mm smaller diameter), and with a thinner calcite layer to its shell (around 3mm difference)", Eulàlia Gili, one of the authors of the study and a researcher at the Department of Geology of the Autonomous University of Barcelona (UAB), tells SINC.

The new species was found in several parts of the Iberian Peninsula - in the Maestrat basin, the Vasco-Cantábrica basin, to the south of the Lusitania basin and in the Cordillera Prebética mountain range, "where it accumulated in dense conglomerations along the banks of the carbonate marine platforms of the Lower Aptian period (114 million years ago)", says Gili.

"This recognition of P. hadriani resolves the lengthy uncertainty about the identity of these polyconitids of the Lower Aptian", the researcher says in the study, which has been published in the Turkish Journal of Earth Sciences.

Adaptation to acidification of the oceans

Gili says the Lower Aptian was a convulsive period, during which significant climate change took place. P. hadriani existed at the time when the first oceanic anoxic event of the Cretaceous took place (between 135 and 65 million years ago). This event was characterised by a "lack of oxygen on the seabed, which led to the mass burial of organic carbon and climate cooling".

"The thicker calcite layer of the shell of this new species compared with that of its predecessor (of the Horiopleura genus), could have helped it adapt better to life in colder waters, which were more acidic due to the increased solubility of atmospheric CO2", the geologist explains.

The researcher adds: "The response of these rudists to ocean acidification could apply to the future evolution of today's marine ecosystems, above all among those kinds of organisms that form their shells or skeletons from calcium carbonate".

Full bibliographic information
Peter W. Skelton, Eulàlia Gili, Telm Bover-Arnal, Ramon Salas, Josep Anton Moreno-Edmar. "A New Species of Polyconites from the Lower Aptian of Iberia and the Early Evolution of Polyconitid Rudists". Turkish Journal of Earth Sciences, Vol. 19, 2010. doi:10.3906/yer-0901-7

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>