Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil droplets can navigate complex maze

19.02.2010
Call them oil droplets with a brain or even "chemo-rats." Scientists in Illinois have developed a way to make simple oil droplets "smart" enough to navigate through a complex maze almost like a trained lab rat.

The finding could have a wide range of practical implications, including helping cancer drugs to reach their target and controlling the movement of futuristic nano-machines, the scientists say. Their study is in the weekly Journal of the American Chemical Society.

Bartosz Grzybowski and colleagues note that the ability to solve a maze is a common scientific test of intelligence. Animals ranging from rats to humans can master the task. Scientists would like to pass along that same ability to anti-cancer drugs, for instance, to help these medications navigate complex mazes of blood vessels and reach the tumor.

The scientists describe an advance in that direction. They developed postage-stamp-sized mazes, and infused them with an alkaline solution, and placed a gel containing a strong acid at the exit. That created a pH gradient, a difference between the acid-alkaline levels. Oil droplets containing a weak acid placed at the entrance of the mazes developed convective flows in response to pH differences and propelled themselves along the gradient toward the exit. Since cancer cells are more acidic than other body cells, the experiment may serve as a model for designing new anti-cancer drugs that move along similar acid-based gradients to target diseased cells, the scientists suggest.

ARTICLE FOR IMMEDIATE RELEASE
"Maze Solving by Chemotactic Droplets"
Click here for video (6.17 MB):
http://pubs.acs.org/doi/suppl/10.1021/ja9076793/suppl_file/ja9076793_si_002.avi
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ja9076793
CONTACT:
Bartosz Grzybowski, Ph.D.
Department of Chemical and Biological Engineering
Northwestern University
Evanston, Ill. 60208-3112
Phone: 847-491-3024
Fax: 847-491-3728
Email: grzybor@northwestern.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>