Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil droplets can navigate complex maze

19.02.2010
Call them oil droplets with a brain or even "chemo-rats." Scientists in Illinois have developed a way to make simple oil droplets "smart" enough to navigate through a complex maze almost like a trained lab rat.

The finding could have a wide range of practical implications, including helping cancer drugs to reach their target and controlling the movement of futuristic nano-machines, the scientists say. Their study is in the weekly Journal of the American Chemical Society.

Bartosz Grzybowski and colleagues note that the ability to solve a maze is a common scientific test of intelligence. Animals ranging from rats to humans can master the task. Scientists would like to pass along that same ability to anti-cancer drugs, for instance, to help these medications navigate complex mazes of blood vessels and reach the tumor.

The scientists describe an advance in that direction. They developed postage-stamp-sized mazes, and infused them with an alkaline solution, and placed a gel containing a strong acid at the exit. That created a pH gradient, a difference between the acid-alkaline levels. Oil droplets containing a weak acid placed at the entrance of the mazes developed convective flows in response to pH differences and propelled themselves along the gradient toward the exit. Since cancer cells are more acidic than other body cells, the experiment may serve as a model for designing new anti-cancer drugs that move along similar acid-based gradients to target diseased cells, the scientists suggest.

ARTICLE FOR IMMEDIATE RELEASE
"Maze Solving by Chemotactic Droplets"
Click here for video (6.17 MB):
http://pubs.acs.org/doi/suppl/10.1021/ja9076793/suppl_file/ja9076793_si_002.avi
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ja9076793
CONTACT:
Bartosz Grzybowski, Ph.D.
Department of Chemical and Biological Engineering
Northwestern University
Evanston, Ill. 60208-3112
Phone: 847-491-3024
Fax: 847-491-3728
Email: grzybor@northwestern.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>