Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles to stem cell therapy cleared

10.06.2010
Researchers at Lund University have come up with a new technique to prevent tumours developing in connection with stem cell transplantations. The results have been published today in the respected scientific journal PNAS.

“When you develop, for example, nerve cells for transplantation, you always get a small contamination of immature stem cells”, explains Johan Jakobsson, head of research group at the Department of Experimental Medical Science.

These immature stem cells can lead to tumours – an unacceptable side-effect.
“We have developed a technique that enables us to eliminate immature stem cells and thus create safer stem cell transplantations.”

The researchers have transplanted the stem cells into mice with Parkinson’s disease. The results are very promising: there are far fewer tumours and the cells that survive are the correct type of nerve cells. The technique uses a specially designed virus.

“We use the virus to genetically modify the cells, which means that we can see which ones we want and which ones we don’t want. You could say that we hijack one of the cell’s gene regulation systems, microRNA. The cell itself tells us when it is mature; it is black when it is immature and turns green when it has completed its development.”

It is relatively simple to isolate, cultivate, preserve and genetically modify stem cells. If transplanted into humans they could replace damaged tissue in the nervous system and support other cells that work to heal a brain injury.

“For us this is a major step. Previously tumours have always developed with this type of transplantation. Now we have shown that this can be avoided”, says Johan Jakobsson.

At Lund University collaborations are underway on stem cell therapy, for example, for Parkinson’s disease, diabetes, stroke, leukaemia and breast cancer. The research community has set the goal of making stem-cell based treatment effective and safe for at least one of the diseases within the next 10 years.

“Our technique could in theory be used for all these diseases”, says Johan Jakobsson. The next step is to conduct experiments on human cell lines.

This project is a collaboration within the Bagadilico research network.

Johan Jakobsson; johan.jakobsson@med.lu.se;
Tel: +46 (0)46 222 42 25; Mobile work: +46 (0)709 28 64 43
Tillbaka

Megan Grindley | idw
Further information:
http://www.pnas.org/content/early/2010/06/03/1006568107.abstract
http://www.med.lu.se/bagadilico

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>