Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles to stem cell therapy cleared

10.06.2010
Researchers at Lund University have come up with a new technique to prevent tumours developing in connection with stem cell transplantations. The results have been published today in the respected scientific journal PNAS.

“When you develop, for example, nerve cells for transplantation, you always get a small contamination of immature stem cells”, explains Johan Jakobsson, head of research group at the Department of Experimental Medical Science.

These immature stem cells can lead to tumours – an unacceptable side-effect.
“We have developed a technique that enables us to eliminate immature stem cells and thus create safer stem cell transplantations.”

The researchers have transplanted the stem cells into mice with Parkinson’s disease. The results are very promising: there are far fewer tumours and the cells that survive are the correct type of nerve cells. The technique uses a specially designed virus.

“We use the virus to genetically modify the cells, which means that we can see which ones we want and which ones we don’t want. You could say that we hijack one of the cell’s gene regulation systems, microRNA. The cell itself tells us when it is mature; it is black when it is immature and turns green when it has completed its development.”

It is relatively simple to isolate, cultivate, preserve and genetically modify stem cells. If transplanted into humans they could replace damaged tissue in the nervous system and support other cells that work to heal a brain injury.

“For us this is a major step. Previously tumours have always developed with this type of transplantation. Now we have shown that this can be avoided”, says Johan Jakobsson.

At Lund University collaborations are underway on stem cell therapy, for example, for Parkinson’s disease, diabetes, stroke, leukaemia and breast cancer. The research community has set the goal of making stem-cell based treatment effective and safe for at least one of the diseases within the next 10 years.

“Our technique could in theory be used for all these diseases”, says Johan Jakobsson. The next step is to conduct experiments on human cell lines.

This project is a collaboration within the Bagadilico research network.

Johan Jakobsson; johan.jakobsson@med.lu.se;
Tel: +46 (0)46 222 42 25; Mobile work: +46 (0)709 28 64 43
Tillbaka

Megan Grindley | idw
Further information:
http://www.pnas.org/content/early/2010/06/03/1006568107.abstract
http://www.med.lu.se/bagadilico

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>