Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing live gene expression in the body

01.07.2013
A team from UNIGE has developed a biotechnology that can be used in many biomedical sectors

Most of our physiological functions fluctuate throughout the day. They are coordinated by a central clock in the brain and by local oscillators, present in virtually every cell.

Many molecular gearwheels of this internal clock have been described by Ueli Schibler, professor at the Faculty of Science of the University of Geneva (UNIGE), Switzerland. To study how the central clock synchronizes subordinate oscillators, the researcher's group used a variety of genetic and technological tools developed in collaboration with a team of UNIGE physicians.

In this way, the scientists were able to directly observe the bioluminescence emitted by 'clock genes' in mice for several months. This biotechnology is applicable to numerous sectors of biomedical research, which attracted the attention of the editors from the journal "Genes & Development".

In mammals, there are many behaviors and biological functions that are regulated by internal clocks. Most of our cells have one, made from a family of 'clock genes', whose cyclic activity reaches a specific peak in 24 hours. These local oscillators are synchronized by a central 'pacemaker' in the brain which adjusts to light.

The firefly lights the way

The use of genetic engineering techniques enabled the study of molecular mechanisms that activate clock genes directly in cultured mammalian cells: 'We have coupled several of these genes to that of luciferase, the enzyme used by the female firefly for producing green light to attract males,' explained Ueli Schibler, member of the National Research Center Frontiers in Genetics. When a specific clock gene is activated in a cell that was transformed in this way, the light signal emitted can be measured using a highly sensitive bioluminescence detector. However, this device, which is capable of detecting signals on the order of a few photons, cannot be used for studying whole organisms.

The contribution of André Liani's mechanical workshop, along with Jean-Pierre Wolf's and Luigi Bonacina's teams from UNIGE's Group of Applied Physics, was thus essential. These scientists developed a customized device that can accommodate mice for several months: 'We equipped it with reflective walls to deflect photons toward a highly sensitive photomultiplier tube to capture bioluminescence,' says André Liani.

Follow the daily expression of clock genes live…

In collaboration with the University of Ulm and the Center for Integrative Genomics (CIG) of Lausanne, the biologists studied how the central clock synchronizes subordinate oscillators in mice. Various clock genes, coupled with the luciferase gene for light emission, were inserted into liver cells using a molecular vector. The time these rodents spent in the bioluminescent device allowed to demonstrate that the central clock generates signals, some of which act directly on the liver oscillators, and others which synchronize them indirectly by controlling the cycles of food intake.

…or the effect of a medication in mice

'This technology enables a drastic reduction in the number of mice needed for this type of experiment, and furthermore, it is applicable to many areas of biomedical research,' says Camille Saini, researcher in the Department of Molecular Biology at UNIGE and first author of this article. These complementary genetic and engineering technology tools could be used to directly follow certain biochemical effects of metabolites like cholesterol or glucose, as well as the response to potential treatments of diseases such as hypercholesterolemia or diabetes. Monitoring the response to various hormones, neurotransmitters and other biochemical messengers is also part of this application range.

Ueli Schibler | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>