Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Observing live gene expression in the body

A team from UNIGE has developed a biotechnology that can be used in many biomedical sectors

Most of our physiological functions fluctuate throughout the day. They are coordinated by a central clock in the brain and by local oscillators, present in virtually every cell.

Many molecular gearwheels of this internal clock have been described by Ueli Schibler, professor at the Faculty of Science of the University of Geneva (UNIGE), Switzerland. To study how the central clock synchronizes subordinate oscillators, the researcher's group used a variety of genetic and technological tools developed in collaboration with a team of UNIGE physicians.

In this way, the scientists were able to directly observe the bioluminescence emitted by 'clock genes' in mice for several months. This biotechnology is applicable to numerous sectors of biomedical research, which attracted the attention of the editors from the journal "Genes & Development".

In mammals, there are many behaviors and biological functions that are regulated by internal clocks. Most of our cells have one, made from a family of 'clock genes', whose cyclic activity reaches a specific peak in 24 hours. These local oscillators are synchronized by a central 'pacemaker' in the brain which adjusts to light.

The firefly lights the way

The use of genetic engineering techniques enabled the study of molecular mechanisms that activate clock genes directly in cultured mammalian cells: 'We have coupled several of these genes to that of luciferase, the enzyme used by the female firefly for producing green light to attract males,' explained Ueli Schibler, member of the National Research Center Frontiers in Genetics. When a specific clock gene is activated in a cell that was transformed in this way, the light signal emitted can be measured using a highly sensitive bioluminescence detector. However, this device, which is capable of detecting signals on the order of a few photons, cannot be used for studying whole organisms.

The contribution of André Liani's mechanical workshop, along with Jean-Pierre Wolf's and Luigi Bonacina's teams from UNIGE's Group of Applied Physics, was thus essential. These scientists developed a customized device that can accommodate mice for several months: 'We equipped it with reflective walls to deflect photons toward a highly sensitive photomultiplier tube to capture bioluminescence,' says André Liani.

Follow the daily expression of clock genes live…

In collaboration with the University of Ulm and the Center for Integrative Genomics (CIG) of Lausanne, the biologists studied how the central clock synchronizes subordinate oscillators in mice. Various clock genes, coupled with the luciferase gene for light emission, were inserted into liver cells using a molecular vector. The time these rodents spent in the bioluminescent device allowed to demonstrate that the central clock generates signals, some of which act directly on the liver oscillators, and others which synchronize them indirectly by controlling the cycles of food intake.

…or the effect of a medication in mice

'This technology enables a drastic reduction in the number of mice needed for this type of experiment, and furthermore, it is applicable to many areas of biomedical research,' says Camille Saini, researcher in the Department of Molecular Biology at UNIGE and first author of this article. These complementary genetic and engineering technology tools could be used to directly follow certain biochemical effects of metabolites like cholesterol or glucose, as well as the response to potential treatments of diseases such as hypercholesterolemia or diabetes. Monitoring the response to various hormones, neurotransmitters and other biochemical messengers is also part of this application range.

Ueli Schibler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>