Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NTU researchers complete the world's first in-depth study of the malaria parasite genome

08.02.2010
This breakthrough makes NTU's School of Biological Sciences a global leader in transcriptional profiling of malaria -- and better yet, could lead to a cure for malaria

Groundbreaking research done at Singapore's Nanyang Technological University's (NTU) School of Biological Sciences (SBS) could lead to the development of more potent drugs or a vaccine for malaria, which is transmitted to humans by infected mosquitoes and kills up to three million people each year.

Assistant Professor Zbynek Bozdech and his team of researchers, including graduate students and post-doctorals from SBS' Division of Genomics & Genetics, have scored a world first in successfully using transcriptional profiling to uncover hitherto unknown gene expression (activity) patterns in malaria.

The research team's breakthrough made the January 2010 edition of the top-ranked journal, Nature Biotechnology, which is a satellite publication of Nature, the world's leading peer-reviewed journal.

Transcriptional profiling is the measurement of the activity of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, distinguish between cells that are actively dividing, or show how the cells react to a particular treatment.

This outcome in infectious disease pathology could potentially be the decade's big breakthrough as it has yielded critical information about how the malaria parasite Plasmodium falciparum – the most deadly form of malaria – responds to existing compounds with curative potential.

The genome or the complete DNA content of the Plasmodium falciparum has about 5,300 genes. Up till now, scientists have a good understanding of the gene functions for only about half of the more than 5,000 genes. Using transcriptional profiling, Asst Prof Zbynek Bozdech's team has successfully uncovered the gene functions for almost the entire genome, with more than 90 percent of the gene functions from the previously unknown half now better understood.

"Drawing on our findings, pharmaceutical companies could explore ways to design a drug that targets the weakest link," said Asst Prof Bozdech of his research which was supported with S$900,000 in grants from Singapore's Ministry of Education and the National Medical Research Council. "We have predicted all the genes that could be used for a vaccine as well," he said.

Researchers at Germany's renowned institute for tropical diseases, the Bernhard Nocht Institute for Tropical Medicine, have validated the research findings, which are expected to provide exciting new insights into parasite biology.

"The successful NTU-BNI joint project has led to the creation of the world's first database to predict the functions of more than 2,500 genes of the malaria parasite previously unknown. The database would be useful to scientists around the world who are developing new vaccines and drugs," says Dr. Tim Gilberger, Head, Malaria Research at BNI.

Preventing malaria infection is important because resistance to anti-malarial drugs is a growing problem worldwide. There is currently no vaccine for malaria, which is widespread in poorer countries where it remains a hindrance to economic development. Also of growing concern to scientists is the confirmation of the first signs of resistance to the only affordable treatment left in the global medicine cabinet for malaria: Artemisinin.

In successfully using transcriptional profiling to study the behavior of the malaria parasite, NTU's researchers have ventured into the unknown and paved the way for future breakthroughs in healthcare.

"The wealth of new information arising from our extensive four-year study is a major contribution to the worldwide effort to better understand and treat malaria," said Prof Peter Rainer Preiser, Deputy Director of NTU's BioSciences Research Centre and a member of the NTU research team.

Hisham Hambari | EurekAlert!
Further information:
http://www.ntu.edu.sg

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>