Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NTU researchers complete the world's first in-depth study of the malaria parasite genome

This breakthrough makes NTU's School of Biological Sciences a global leader in transcriptional profiling of malaria -- and better yet, could lead to a cure for malaria

Groundbreaking research done at Singapore's Nanyang Technological University's (NTU) School of Biological Sciences (SBS) could lead to the development of more potent drugs or a vaccine for malaria, which is transmitted to humans by infected mosquitoes and kills up to three million people each year.

Assistant Professor Zbynek Bozdech and his team of researchers, including graduate students and post-doctorals from SBS' Division of Genomics & Genetics, have scored a world first in successfully using transcriptional profiling to uncover hitherto unknown gene expression (activity) patterns in malaria.

The research team's breakthrough made the January 2010 edition of the top-ranked journal, Nature Biotechnology, which is a satellite publication of Nature, the world's leading peer-reviewed journal.

Transcriptional profiling is the measurement of the activity of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, distinguish between cells that are actively dividing, or show how the cells react to a particular treatment.

This outcome in infectious disease pathology could potentially be the decade's big breakthrough as it has yielded critical information about how the malaria parasite Plasmodium falciparum – the most deadly form of malaria – responds to existing compounds with curative potential.

The genome or the complete DNA content of the Plasmodium falciparum has about 5,300 genes. Up till now, scientists have a good understanding of the gene functions for only about half of the more than 5,000 genes. Using transcriptional profiling, Asst Prof Zbynek Bozdech's team has successfully uncovered the gene functions for almost the entire genome, with more than 90 percent of the gene functions from the previously unknown half now better understood.

"Drawing on our findings, pharmaceutical companies could explore ways to design a drug that targets the weakest link," said Asst Prof Bozdech of his research which was supported with S$900,000 in grants from Singapore's Ministry of Education and the National Medical Research Council. "We have predicted all the genes that could be used for a vaccine as well," he said.

Researchers at Germany's renowned institute for tropical diseases, the Bernhard Nocht Institute for Tropical Medicine, have validated the research findings, which are expected to provide exciting new insights into parasite biology.

"The successful NTU-BNI joint project has led to the creation of the world's first database to predict the functions of more than 2,500 genes of the malaria parasite previously unknown. The database would be useful to scientists around the world who are developing new vaccines and drugs," says Dr. Tim Gilberger, Head, Malaria Research at BNI.

Preventing malaria infection is important because resistance to anti-malarial drugs is a growing problem worldwide. There is currently no vaccine for malaria, which is widespread in poorer countries where it remains a hindrance to economic development. Also of growing concern to scientists is the confirmation of the first signs of resistance to the only affordable treatment left in the global medicine cabinet for malaria: Artemisinin.

In successfully using transcriptional profiling to study the behavior of the malaria parasite, NTU's researchers have ventured into the unknown and paved the way for future breakthroughs in healthcare.

"The wealth of new information arising from our extensive four-year study is a major contribution to the worldwide effort to better understand and treat malaria," said Prof Peter Rainer Preiser, Deputy Director of NTU's BioSciences Research Centre and a member of the NTU research team.

Hisham Hambari | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>