Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NTU professor discovers method to efficiently produce less toxic drugs using organic molecules

10.07.2009
Nanyang Technological University's Associate Professor Zhong Guofu has made a significant contribution to the study of using small organic molecules as catalysts, in the synthesis process called organocatalysis

Nanyang Technological University (NTU)'s Associate Professor Zhong Guofu has made a significant contribution to the field of organic chemistry, in particular the study of using small organic molecules as catalysts, in the synthesis process called organocatalysis. Such synthesis process takes place for example, during the production of chiral drugs.

In his study, Professor Zhong, who is from NTU's School of Physical and Mathematical Sciences, has successfully created the first example where an organocatalyst is able to be 'recycled' (i.e. multiple reactions achieved with the recycled catalyst) during the synthesis process thus increasing its yield/effectiveness. Previously no one has been able to 'recycle' the organocatalysts directly (i.e. only single reactions performed) leading to the limitation of the use of organocatalysis in the industry.

This ability to 'recycle' and produce multiple reactions thus increases the efficacy of the organocatalysis, making it a more efficient process, something that has not been demonstrated before. It also means that fewer chemicals are used in the synthesis process, making it a far more 'green' and less toxic process.

Professor Zhong has written a paper on his discovery, which has been published in a recent edition of the scientific journal ChemComm.

The study of organocatalysis using organic molecules (which exists in nature, e.g. protein, amino acids) is a relatively new idea that started less than 10 years ago. The present dominant catalysts used in such synthesis process are 'ligand-metal catalysts' (such as ligand-copper, -palladium, -platinum, -ruthenium etc). However when compared to organocatalysts, ligand-metal catalysis is considered less 'green' and thus more 'toxic'.

However, the problem with using organocatalysts is that it is usually not an efficient or cost effective process since relatively a high catalyst loading is needed, compared to ligand-metal catalysis.

Professor Zhong is seeking patent in the United States for his hi process, which will be useful for the synthesis of certain chiral drug molecules which will be less toxic and produced under more efficient processes. The other advantage is that this process is considered 'highly enantioselective' – producing asymmetric synthesis that is desirable, for example, in synthesising certain drugs with chiral centers.

Professor Zhong is also filing for another patent related to his findings on domino synthesis, where the production process of one of the leading anti-cholesterol drugs in the world will be able to be shortened from its present 11 production steps to only 2-3 steps in the synthesis of its core intermediate. Pharmaceutical firms have expressed interest in adopting his methodology in their drug discovery and production process.

Hisham Hambari | EurekAlert!
Further information:
http://www.ntu.edu.sg

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>