Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NTU professor discovers method to efficiently produce less toxic drugs using organic molecules

10.07.2009
Nanyang Technological University's Associate Professor Zhong Guofu has made a significant contribution to the study of using small organic molecules as catalysts, in the synthesis process called organocatalysis

Nanyang Technological University (NTU)'s Associate Professor Zhong Guofu has made a significant contribution to the field of organic chemistry, in particular the study of using small organic molecules as catalysts, in the synthesis process called organocatalysis. Such synthesis process takes place for example, during the production of chiral drugs.

In his study, Professor Zhong, who is from NTU's School of Physical and Mathematical Sciences, has successfully created the first example where an organocatalyst is able to be 'recycled' (i.e. multiple reactions achieved with the recycled catalyst) during the synthesis process thus increasing its yield/effectiveness. Previously no one has been able to 'recycle' the organocatalysts directly (i.e. only single reactions performed) leading to the limitation of the use of organocatalysis in the industry.

This ability to 'recycle' and produce multiple reactions thus increases the efficacy of the organocatalysis, making it a more efficient process, something that has not been demonstrated before. It also means that fewer chemicals are used in the synthesis process, making it a far more 'green' and less toxic process.

Professor Zhong has written a paper on his discovery, which has been published in a recent edition of the scientific journal ChemComm.

The study of organocatalysis using organic molecules (which exists in nature, e.g. protein, amino acids) is a relatively new idea that started less than 10 years ago. The present dominant catalysts used in such synthesis process are 'ligand-metal catalysts' (such as ligand-copper, -palladium, -platinum, -ruthenium etc). However when compared to organocatalysts, ligand-metal catalysis is considered less 'green' and thus more 'toxic'.

However, the problem with using organocatalysts is that it is usually not an efficient or cost effective process since relatively a high catalyst loading is needed, compared to ligand-metal catalysis.

Professor Zhong is seeking patent in the United States for his hi process, which will be useful for the synthesis of certain chiral drug molecules which will be less toxic and produced under more efficient processes. The other advantage is that this process is considered 'highly enantioselective' – producing asymmetric synthesis that is desirable, for example, in synthesising certain drugs with chiral centers.

Professor Zhong is also filing for another patent related to his findings on domino synthesis, where the production process of one of the leading anti-cholesterol drugs in the world will be able to be shortened from its present 11 production steps to only 2-3 steps in the synthesis of its core intermediate. Pharmaceutical firms have expressed interest in adopting his methodology in their drug discovery and production process.

Hisham Hambari | EurekAlert!
Further information:
http://www.ntu.edu.sg

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>