Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NRL researchers report a forceful new method to sensitively detect proteins

Scientists at the Naval Research Laboratory (NRL) recently reported the detection of toxins with unprecedented speed, sensitivity, and simplicity. The approach can sense as few as a few hundred molecules in a drop of blood in less than 10 minutes, with only four simple steps from sample to answer.

The sensitive new test builds on NRL's patent-pending Fluidic Force Discrimination™ (FFD) assay. In a FFD assay, a chip has arrays of receptor molecules such as antibodies that capture toxins or other target molecules that have been labeled with micrometer-sized beads.

By encapsulating the chip in a microflow chamber, the fluid flow can be controlled to apply just enough force to remove beads that are resting on the array but not truly labeling a toxin. "In this way," explains lead author Dr. Shawn Mulvaney, "very few molecules can be detected, because there is almost no background signal." "And because we can get the background so low," he adds, "FFD assays are very specific, with very few false positives."

In the current report, the NRL researchers have adapted FFD assays to detect a protein toxin at concentrations as low as 35 attomolar—over 1000 times more sensitive than existing commercial tests for proteins. In the new assay, dubbed "Semi-Homogeneous Fluidic Force Discrimination," the antibody-coated microbeads are mixed directly with the sample and rapidly collect the dilute toxin molecules. The toxin-coated beads are then injected into the microflow chamber where they are captured by the receptor designed for that target. Finally, beads that don't belong are removed with fluid forces. The remaining beads are all attached by the toxin to the surface and may be counted to indicate the toxin concentration. NRL has developed both electronic and optical systems to count the beads, along with reusable plastic test cartridges.

The paper won the award for Most Original Contribution at the Tenth World Congress on Biosensors, held in Shanghai, China, May 14-16, 2008 out of 978 competing papers. The awards committee noted that it was the combination of outstanding performance and modeling that set the NRL paper above the competition. The researchers developed a detailed mathematical model that includes every step of the assay, which was critical to maximizing the capture and the overall sensitivity they thereby achieved. "When very few molecules are present in a sample, such as a drop of blood," comments NRL's Dr. Paul Sheehan, "it is critical to try and capture and count every single one." Dr. Paul Sheehan emphasized that "target capture and delivery tends to be a neglected aspect of biosensor design."

"A key advantage of the NRL platform," explains Dr. Lloyd Whitman, now at the National Institute of Standards and Technology, "is that it can be applied simply even to the most challenging samples, such as serum, blood, urine, or food." "We expect it to have broad applications in medical and veterinary diagnostics, food and water testing, and national security." Dr. Mulvaney concludes, "Based on the simplicity of the method, we envision small, portable systems for point-of-care testing, field monitoring, and use by first responders."

Donna McKinney | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>