Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL researchers report a forceful new method to sensitively detect proteins

18.03.2009
Scientists at the Naval Research Laboratory (NRL) recently reported the detection of toxins with unprecedented speed, sensitivity, and simplicity. The approach can sense as few as a few hundred molecules in a drop of blood in less than 10 minutes, with only four simple steps from sample to answer.

The sensitive new test builds on NRL's patent-pending Fluidic Force Discrimination™ (FFD) assay. In a FFD assay, a chip has arrays of receptor molecules such as antibodies that capture toxins or other target molecules that have been labeled with micrometer-sized beads.

By encapsulating the chip in a microflow chamber, the fluid flow can be controlled to apply just enough force to remove beads that are resting on the array but not truly labeling a toxin. "In this way," explains lead author Dr. Shawn Mulvaney, "very few molecules can be detected, because there is almost no background signal." "And because we can get the background so low," he adds, "FFD assays are very specific, with very few false positives."

In the current report, the NRL researchers have adapted FFD assays to detect a protein toxin at concentrations as low as 35 attomolar—over 1000 times more sensitive than existing commercial tests for proteins. In the new assay, dubbed "Semi-Homogeneous Fluidic Force Discrimination," the antibody-coated microbeads are mixed directly with the sample and rapidly collect the dilute toxin molecules. The toxin-coated beads are then injected into the microflow chamber where they are captured by the receptor designed for that target. Finally, beads that don't belong are removed with fluid forces. The remaining beads are all attached by the toxin to the surface and may be counted to indicate the toxin concentration. NRL has developed both electronic and optical systems to count the beads, along with reusable plastic test cartridges.

The paper won the award for Most Original Contribution at the Tenth World Congress on Biosensors, held in Shanghai, China, May 14-16, 2008 out of 978 competing papers. The awards committee noted that it was the combination of outstanding performance and modeling that set the NRL paper above the competition. The researchers developed a detailed mathematical model that includes every step of the assay, which was critical to maximizing the capture and the overall sensitivity they thereby achieved. "When very few molecules are present in a sample, such as a drop of blood," comments NRL's Dr. Paul Sheehan, "it is critical to try and capture and count every single one." Dr. Paul Sheehan emphasized that "target capture and delivery tends to be a neglected aspect of biosensor design."

"A key advantage of the NRL platform," explains Dr. Lloyd Whitman, now at the National Institute of Standards and Technology, "is that it can be applied simply even to the most challenging samples, such as serum, blood, urine, or food." "We expect it to have broad applications in medical and veterinary diagnostics, food and water testing, and national security." Dr. Mulvaney concludes, "Based on the simplicity of the method, we envision small, portable systems for point-of-care testing, field monitoring, and use by first responders."

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>