Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NPL scientists blend synthetic air to measure climate change

26.02.2014

New gas standard to meet increasing demand

Scientists at the National Physical Laboratory (NPL) have produced a synthetic air reference standard which can be used to accurately measure levels of carbon dioxide and methane in the atmosphere. This will greatly help scientists contribute to our understanding of climate change.


This is a photo of gas cylinders.

Credit: National Physical Laboratory

A paper published in Analytical Chemistry describes how researchers at NPL have created a synthetic gas standard for the first time, which is comparable to the World Meteorological Organisation (WMO) scale and can be quickly produced in a laboratory and distributed, meeting growing demand.

The bulk of demand for gas standards comes from atmospheric monitoring stations around the world. The data collected from these is important to our understanding of climate change.

To reliably compare the concentration of carbon dioxide and methane in air at different locations, and over time, a primary standard to which all measurements relate is required. We must be able to relate the measurements to a trusted base unit, so we can reliably compare measurement between London and Beijing, or between 1990 and 2014.

The current primary standards for carbon dioxide and methane are a suite of cylinders of compressed air captured from Niwot Ridge in Colorado and held at the National Oceanic and Atmospheric Administration (NOAA).

They are used to create secondary standards, which are used to calibrate the instruments that measure greenhouse gasses around the world.

A new improved measurement technique - cavity ring-down spectroscopy (CRDS) - has resulted in a dramatic increase in the number of atmospheric measurements taken. As the requirement for data that is comparable to the WMO scale increases, there is a corresponding increase in the demand for comparable reference standards.

Supplying the demand for reference standards comparable to the WMO scale is becoming an issue. An infrastructure to disseminate reference standards prepared gravimetrically – i.e. by weighing the gas in the cylinder - that are traceable to the International System of Units (SI) offers a means of broadening availability. These could overcome the cost and complexity of sampling air under global background conditions which can only be carried out at remote locations.

NPL has developed a solution, producing a synthetic standard which can be used to calibrate carbon dioxide and methane measuring instruments. Rather than sampling air directly, NPL created the sample in the laboratory by carefully blending a mix of gaseous components found in air.

However preparing reference standards synthetically presents a significant challenge. Industrially produced carbon dioxide has a different isotopic distribution to that of atmospheric air, which measurement instruments read differently.

Paul Brewer, Principal Research Scientist at NPL, said: "By using high accuracy gravimetry, we were able to prepare a gas mixture that accurately replicated the natural occurring isotopic carbon dioxide. The samples were tested using NPL's world leading measurement equipment and expertise, which demonstrated that the synthetic standard was comparable with the NOAA standard and suitable for use with the international measurement scale for atmospheric monitoring."

The research has demonstrated that air standards comparable to the WMO scale can be prepared synthetically with an isotopic distribution matching that in the atmosphere. The methods used can be replicated, leading to widespread availability of standards for globally monitoring these two high impact greenhouse gasses. For the international atmospheric monitoring community and for gas companies, this could solve the pressing supply issue.

The project has received widespread support from the atmospheric measurement community. Euan G. Nisbet, Foundation Professor of Earth Sciences at Royal Holloway maintains an Atlantic network of greenhouse gas measurements. He says: "Standards are a critical problem in greenhouse gas measurement. Developing high accuracy reference standards of carbon dioxide and methane with international comparability, and traceability to the SI, will greatly contribute to our work, and to improving our understanding of how greenhouse gases affect the atmosphere."

The full paper can be viewed here:

http://pubs.acs.org/doi/abs/10.1021/ac403982m 

Alex Cloney | EurekAlert!

More articles from Life Sciences:

nachricht New technology helps ID aggressive early breast cancer
01.07.2016 | University of Michigan Health System

nachricht In times of great famine, microalgae digest themselves
01.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

New technology helps ID aggressive early breast cancer

01.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>