Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NPL scientists blend synthetic air to measure climate change

26.02.2014

New gas standard to meet increasing demand

Scientists at the National Physical Laboratory (NPL) have produced a synthetic air reference standard which can be used to accurately measure levels of carbon dioxide and methane in the atmosphere. This will greatly help scientists contribute to our understanding of climate change.


This is a photo of gas cylinders.

Credit: National Physical Laboratory

A paper published in Analytical Chemistry describes how researchers at NPL have created a synthetic gas standard for the first time, which is comparable to the World Meteorological Organisation (WMO) scale and can be quickly produced in a laboratory and distributed, meeting growing demand.

The bulk of demand for gas standards comes from atmospheric monitoring stations around the world. The data collected from these is important to our understanding of climate change.

To reliably compare the concentration of carbon dioxide and methane in air at different locations, and over time, a primary standard to which all measurements relate is required. We must be able to relate the measurements to a trusted base unit, so we can reliably compare measurement between London and Beijing, or between 1990 and 2014.

The current primary standards for carbon dioxide and methane are a suite of cylinders of compressed air captured from Niwot Ridge in Colorado and held at the National Oceanic and Atmospheric Administration (NOAA).

They are used to create secondary standards, which are used to calibrate the instruments that measure greenhouse gasses around the world.

A new improved measurement technique - cavity ring-down spectroscopy (CRDS) - has resulted in a dramatic increase in the number of atmospheric measurements taken. As the requirement for data that is comparable to the WMO scale increases, there is a corresponding increase in the demand for comparable reference standards.

Supplying the demand for reference standards comparable to the WMO scale is becoming an issue. An infrastructure to disseminate reference standards prepared gravimetrically – i.e. by weighing the gas in the cylinder - that are traceable to the International System of Units (SI) offers a means of broadening availability. These could overcome the cost and complexity of sampling air under global background conditions which can only be carried out at remote locations.

NPL has developed a solution, producing a synthetic standard which can be used to calibrate carbon dioxide and methane measuring instruments. Rather than sampling air directly, NPL created the sample in the laboratory by carefully blending a mix of gaseous components found in air.

However preparing reference standards synthetically presents a significant challenge. Industrially produced carbon dioxide has a different isotopic distribution to that of atmospheric air, which measurement instruments read differently.

Paul Brewer, Principal Research Scientist at NPL, said: "By using high accuracy gravimetry, we were able to prepare a gas mixture that accurately replicated the natural occurring isotopic carbon dioxide. The samples were tested using NPL's world leading measurement equipment and expertise, which demonstrated that the synthetic standard was comparable with the NOAA standard and suitable for use with the international measurement scale for atmospheric monitoring."

The research has demonstrated that air standards comparable to the WMO scale can be prepared synthetically with an isotopic distribution matching that in the atmosphere. The methods used can be replicated, leading to widespread availability of standards for globally monitoring these two high impact greenhouse gasses. For the international atmospheric monitoring community and for gas companies, this could solve the pressing supply issue.

The project has received widespread support from the atmospheric measurement community. Euan G. Nisbet, Foundation Professor of Earth Sciences at Royal Holloway maintains an Atlantic network of greenhouse gas measurements. He says: "Standards are a critical problem in greenhouse gas measurement. Developing high accuracy reference standards of carbon dioxide and methane with international comparability, and traceability to the SI, will greatly contribute to our work, and to improving our understanding of how greenhouse gases affect the atmosphere."

The full paper can be viewed here:

http://pubs.acs.org/doi/abs/10.1021/ac403982m 

Alex Cloney | EurekAlert!

More articles from Life Sciences:

nachricht World’s fastest algorithm for recognising regular DNA sequences
04.05.2015 | Europäische Akademie Bozen - European Academy Bozen/Bolzano

nachricht Proteomics identifies DNA repair toolbox
04.05.2015 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015 | Life Sciences

Interzum 2015: WPC furniture with low flammability

04.05.2015 | Trade Fair News

Improved detection of radio waves from space

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>