Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NPL scientists blend synthetic air to measure climate change

26.02.2014

New gas standard to meet increasing demand

Scientists at the National Physical Laboratory (NPL) have produced a synthetic air reference standard which can be used to accurately measure levels of carbon dioxide and methane in the atmosphere. This will greatly help scientists contribute to our understanding of climate change.


This is a photo of gas cylinders.

Credit: National Physical Laboratory

A paper published in Analytical Chemistry describes how researchers at NPL have created a synthetic gas standard for the first time, which is comparable to the World Meteorological Organisation (WMO) scale and can be quickly produced in a laboratory and distributed, meeting growing demand.

The bulk of demand for gas standards comes from atmospheric monitoring stations around the world. The data collected from these is important to our understanding of climate change.

To reliably compare the concentration of carbon dioxide and methane in air at different locations, and over time, a primary standard to which all measurements relate is required. We must be able to relate the measurements to a trusted base unit, so we can reliably compare measurement between London and Beijing, or between 1990 and 2014.

The current primary standards for carbon dioxide and methane are a suite of cylinders of compressed air captured from Niwot Ridge in Colorado and held at the National Oceanic and Atmospheric Administration (NOAA).

They are used to create secondary standards, which are used to calibrate the instruments that measure greenhouse gasses around the world.

A new improved measurement technique - cavity ring-down spectroscopy (CRDS) - has resulted in a dramatic increase in the number of atmospheric measurements taken. As the requirement for data that is comparable to the WMO scale increases, there is a corresponding increase in the demand for comparable reference standards.

Supplying the demand for reference standards comparable to the WMO scale is becoming an issue. An infrastructure to disseminate reference standards prepared gravimetrically – i.e. by weighing the gas in the cylinder - that are traceable to the International System of Units (SI) offers a means of broadening availability. These could overcome the cost and complexity of sampling air under global background conditions which can only be carried out at remote locations.

NPL has developed a solution, producing a synthetic standard which can be used to calibrate carbon dioxide and methane measuring instruments. Rather than sampling air directly, NPL created the sample in the laboratory by carefully blending a mix of gaseous components found in air.

However preparing reference standards synthetically presents a significant challenge. Industrially produced carbon dioxide has a different isotopic distribution to that of atmospheric air, which measurement instruments read differently.

Paul Brewer, Principal Research Scientist at NPL, said: "By using high accuracy gravimetry, we were able to prepare a gas mixture that accurately replicated the natural occurring isotopic carbon dioxide. The samples were tested using NPL's world leading measurement equipment and expertise, which demonstrated that the synthetic standard was comparable with the NOAA standard and suitable for use with the international measurement scale for atmospheric monitoring."

The research has demonstrated that air standards comparable to the WMO scale can be prepared synthetically with an isotopic distribution matching that in the atmosphere. The methods used can be replicated, leading to widespread availability of standards for globally monitoring these two high impact greenhouse gasses. For the international atmospheric monitoring community and for gas companies, this could solve the pressing supply issue.

The project has received widespread support from the atmospheric measurement community. Euan G. Nisbet, Foundation Professor of Earth Sciences at Royal Holloway maintains an Atlantic network of greenhouse gas measurements. He says: "Standards are a critical problem in greenhouse gas measurement. Developing high accuracy reference standards of carbon dioxide and methane with international comparability, and traceability to the SI, will greatly contribute to our work, and to improving our understanding of how greenhouse gases affect the atmosphere."

The full paper can be viewed here:

http://pubs.acs.org/doi/abs/10.1021/ac403982m 

Alex Cloney | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>