Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientists identify trigger in cat allergy

10.03.2011
A breakthrough by scientists at The University of Nottingham could provide hope for any allergy sufferers who have ever had to choose between their health and their household pet.

The team of immunologists led by Drs Ghaem-Maghami and Martinez-Pomares in the University's School of Molecular Medical Sciences, and funded by the charity Asthma UK, have identified a cell component which plays a key role in triggering allergic responses to cat dander.

The discovery furthers our understanding of how the body's immune system identifies and reacts to allergens, which could pave the way in developing new ways of treating allergies.

The development is especially good news for the millions of people with asthma whose condition is often worsened by their allergy to airborne allergens from cat dander or house dust mite. Cat dander consists of microscopic pieces of cat skin which easily become airborne.

Dr Amir Ghaem-Maghami said: "There has been a sharp increase in the prevalence of allergies over the past few decades and allergic asthma among children has reached epidemic proportions in many industrialised countries, including the UK.

"Despite improvements in patient care, three people die every day in the UK from asthma, and most therapies target symptoms rather than curing the condition.

"Many people with asthma are highly sensitive to airborne allergens such as cat dander or house dust mite — in fact many studies have shown that up to 40 per cent of children with asthma are allergic to cat allergens.

"A better understanding of how the interaction between allergens and the immune system leads to allergy is vital if we are to develop more effective and efficient treatments for this debilitating condition."

Dr Elaine Vickers, Research Relations Manager at Asthma UK, says: "We are delighted to see the rapid progress that Dr Ghaem-Maghami and his colleagues are making in such a complex area of research.

"This is a great example of where Asthma UK's research funding is leading to a better understanding of asthma which could ultimately benefit thousands of people with both asthma and allergies."

Allergy is a disorder caused by the body's immune system reacting to usually harmless substances found in the environment, known as allergens. Believing itself under attack, the immune system produces a molecule called IgE, which eventually leads to release of further chemicals (including histamine) by certain immune cells which together cause an inflammatory response and the classic symptoms of allergy — itchy eyes, sneezing, runny nose and wheezing.

The Nottingham work, recently published in the Journal of Biological Chemistry, has focused on the role of the mannose receptor (MR), a receptor found on the surface of dendritic cells. These cells are among the first cells in the immune system that come into contact with allergens.

The team recently found that the MR binds to a wide range of allergens and plays an important role in the allergic response to house dust mite allergens. In their latest study they looked at the contribution of MR to allergy caused by a major cat allergen called Fel d 1.

They were able to prove that MR is needed for the body to recognise Fel d 1 as a potential foreign invader and for the production of IgE against Fel d 1. The discovery shows that MR plays a pivotal role not only in recognising allergens but also in provoking the body's allergic response to them.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>