Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientists identify trigger in cat allergy

10.03.2011
A breakthrough by scientists at The University of Nottingham could provide hope for any allergy sufferers who have ever had to choose between their health and their household pet.

The team of immunologists led by Drs Ghaem-Maghami and Martinez-Pomares in the University's School of Molecular Medical Sciences, and funded by the charity Asthma UK, have identified a cell component which plays a key role in triggering allergic responses to cat dander.

The discovery furthers our understanding of how the body's immune system identifies and reacts to allergens, which could pave the way in developing new ways of treating allergies.

The development is especially good news for the millions of people with asthma whose condition is often worsened by their allergy to airborne allergens from cat dander or house dust mite. Cat dander consists of microscopic pieces of cat skin which easily become airborne.

Dr Amir Ghaem-Maghami said: "There has been a sharp increase in the prevalence of allergies over the past few decades and allergic asthma among children has reached epidemic proportions in many industrialised countries, including the UK.

"Despite improvements in patient care, three people die every day in the UK from asthma, and most therapies target symptoms rather than curing the condition.

"Many people with asthma are highly sensitive to airborne allergens such as cat dander or house dust mite — in fact many studies have shown that up to 40 per cent of children with asthma are allergic to cat allergens.

"A better understanding of how the interaction between allergens and the immune system leads to allergy is vital if we are to develop more effective and efficient treatments for this debilitating condition."

Dr Elaine Vickers, Research Relations Manager at Asthma UK, says: "We are delighted to see the rapid progress that Dr Ghaem-Maghami and his colleagues are making in such a complex area of research.

"This is a great example of where Asthma UK's research funding is leading to a better understanding of asthma which could ultimately benefit thousands of people with both asthma and allergies."

Allergy is a disorder caused by the body's immune system reacting to usually harmless substances found in the environment, known as allergens. Believing itself under attack, the immune system produces a molecule called IgE, which eventually leads to release of further chemicals (including histamine) by certain immune cells which together cause an inflammatory response and the classic symptoms of allergy — itchy eyes, sneezing, runny nose and wheezing.

The Nottingham work, recently published in the Journal of Biological Chemistry, has focused on the role of the mannose receptor (MR), a receptor found on the surface of dendritic cells. These cells are among the first cells in the immune system that come into contact with allergens.

The team recently found that the MR binds to a wide range of allergens and plays an important role in the allergic response to house dust mite allergens. In their latest study they looked at the contribution of MR to allergy caused by a major cat allergen called Fel d 1.

They were able to prove that MR is needed for the body to recognise Fel d 1 as a potential foreign invader and for the production of IgE against Fel d 1. The discovery shows that MR plays a pivotal role not only in recognising allergens but also in provoking the body's allergic response to them.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>