Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientists identify trigger in cat allergy

10.03.2011
A breakthrough by scientists at The University of Nottingham could provide hope for any allergy sufferers who have ever had to choose between their health and their household pet.

The team of immunologists led by Drs Ghaem-Maghami and Martinez-Pomares in the University's School of Molecular Medical Sciences, and funded by the charity Asthma UK, have identified a cell component which plays a key role in triggering allergic responses to cat dander.

The discovery furthers our understanding of how the body's immune system identifies and reacts to allergens, which could pave the way in developing new ways of treating allergies.

The development is especially good news for the millions of people with asthma whose condition is often worsened by their allergy to airborne allergens from cat dander or house dust mite. Cat dander consists of microscopic pieces of cat skin which easily become airborne.

Dr Amir Ghaem-Maghami said: "There has been a sharp increase in the prevalence of allergies over the past few decades and allergic asthma among children has reached epidemic proportions in many industrialised countries, including the UK.

"Despite improvements in patient care, three people die every day in the UK from asthma, and most therapies target symptoms rather than curing the condition.

"Many people with asthma are highly sensitive to airborne allergens such as cat dander or house dust mite — in fact many studies have shown that up to 40 per cent of children with asthma are allergic to cat allergens.

"A better understanding of how the interaction between allergens and the immune system leads to allergy is vital if we are to develop more effective and efficient treatments for this debilitating condition."

Dr Elaine Vickers, Research Relations Manager at Asthma UK, says: "We are delighted to see the rapid progress that Dr Ghaem-Maghami and his colleagues are making in such a complex area of research.

"This is a great example of where Asthma UK's research funding is leading to a better understanding of asthma which could ultimately benefit thousands of people with both asthma and allergies."

Allergy is a disorder caused by the body's immune system reacting to usually harmless substances found in the environment, known as allergens. Believing itself under attack, the immune system produces a molecule called IgE, which eventually leads to release of further chemicals (including histamine) by certain immune cells which together cause an inflammatory response and the classic symptoms of allergy — itchy eyes, sneezing, runny nose and wheezing.

The Nottingham work, recently published in the Journal of Biological Chemistry, has focused on the role of the mannose receptor (MR), a receptor found on the surface of dendritic cells. These cells are among the first cells in the immune system that come into contact with allergens.

The team recently found that the MR binds to a wide range of allergens and plays an important role in the allergic response to house dust mite allergens. In their latest study they looked at the contribution of MR to allergy caused by a major cat allergen called Fel d 1.

They were able to prove that MR is needed for the body to recognise Fel d 1 as a potential foreign invader and for the production of IgE against Fel d 1. The discovery shows that MR plays a pivotal role not only in recognising allergens but also in provoking the body's allergic response to them.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>