Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientists identify trigger in cat allergy

10.03.2011
A breakthrough by scientists at The University of Nottingham could provide hope for any allergy sufferers who have ever had to choose between their health and their household pet.

The team of immunologists led by Drs Ghaem-Maghami and Martinez-Pomares in the University's School of Molecular Medical Sciences, and funded by the charity Asthma UK, have identified a cell component which plays a key role in triggering allergic responses to cat dander.

The discovery furthers our understanding of how the body's immune system identifies and reacts to allergens, which could pave the way in developing new ways of treating allergies.

The development is especially good news for the millions of people with asthma whose condition is often worsened by their allergy to airborne allergens from cat dander or house dust mite. Cat dander consists of microscopic pieces of cat skin which easily become airborne.

Dr Amir Ghaem-Maghami said: "There has been a sharp increase in the prevalence of allergies over the past few decades and allergic asthma among children has reached epidemic proportions in many industrialised countries, including the UK.

"Despite improvements in patient care, three people die every day in the UK from asthma, and most therapies target symptoms rather than curing the condition.

"Many people with asthma are highly sensitive to airborne allergens such as cat dander or house dust mite — in fact many studies have shown that up to 40 per cent of children with asthma are allergic to cat allergens.

"A better understanding of how the interaction between allergens and the immune system leads to allergy is vital if we are to develop more effective and efficient treatments for this debilitating condition."

Dr Elaine Vickers, Research Relations Manager at Asthma UK, says: "We are delighted to see the rapid progress that Dr Ghaem-Maghami and his colleagues are making in such a complex area of research.

"This is a great example of where Asthma UK's research funding is leading to a better understanding of asthma which could ultimately benefit thousands of people with both asthma and allergies."

Allergy is a disorder caused by the body's immune system reacting to usually harmless substances found in the environment, known as allergens. Believing itself under attack, the immune system produces a molecule called IgE, which eventually leads to release of further chemicals (including histamine) by certain immune cells which together cause an inflammatory response and the classic symptoms of allergy — itchy eyes, sneezing, runny nose and wheezing.

The Nottingham work, recently published in the Journal of Biological Chemistry, has focused on the role of the mannose receptor (MR), a receptor found on the surface of dendritic cells. These cells are among the first cells in the immune system that come into contact with allergens.

The team recently found that the MR binds to a wide range of allergens and plays an important role in the allergic response to house dust mite allergens. In their latest study they looked at the contribution of MR to allergy caused by a major cat allergen called Fel d 1.

They were able to prove that MR is needed for the body to recognise Fel d 1 as a potential foreign invader and for the production of IgE against Fel d 1. The discovery shows that MR plays a pivotal role not only in recognising allergens but also in provoking the body's allergic response to them.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>