Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame study focuses on protein dynamics

22.01.2010
A discovery by associate professor of chemistry and biochemistry Brian Baker and his research group at the University of Notre Dame reveals the importance of dynamic motion by proteins involved in the body's immune response. Results of the study were published in Immunity, the leading research journal in the field of immunology.

Scientists have long known that receptors on the immune system's T-cells are important for discovering and destroying cells that are infected with viruses or other pathogens. Baker's group studied cross-reactivity, the ability of different T-cell receptors which number perhaps a few hundred million in the body to recognize the vastly larger number of possible antigens produced by other cells. The process is important for dealing with viruses, cancers, autoimmunity, transplant rejection and other issues related to the immune system.

Most past studies considered the receptors on each cell as static components, but in fact the molecules move and adopt multiple structures. Baker's group found that the success or failure of the T-cell receptor to attach to a target cell's antigen involves complex movements in search of a compatible final structure. Different antigens produce different kinds of motion.

"What we're adding to the equation is how motion is involved," Baker said. "It both complicates as well as simplifies how we think about recognition. Different extents of motion can exist when you have different antigens being presented. It complicates our thinking about how diversity is presented to the immune system, yet simplifies our thinking about how diversity is accommodated by the immune system.

"Overall, we've got to consider flexibility when we think about structures in the immune system and structures in biology in general."

The static view long-favored in structural biology is shifting to a greater emphasis on protein dynamics, he says. For example, scientists have discovered that vaccines can help the immune system fight cancer, but vaccines that mimic biological structures can still fail if they do not take into account flexibility and dynamics.

"It probably will be one of the defining areas of biochemistry over the next 10 to 15 years – getting at the role of how biological molecules move and how that movement influences biology," Baker said.

Contact: Brian Baker, associate professor of Chemistry and Biochemistry, brian-baker@nd.edu, 574-631-9810 News

brian baker | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>