Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame study focuses on protein dynamics

22.01.2010
A discovery by associate professor of chemistry and biochemistry Brian Baker and his research group at the University of Notre Dame reveals the importance of dynamic motion by proteins involved in the body's immune response. Results of the study were published in Immunity, the leading research journal in the field of immunology.

Scientists have long known that receptors on the immune system's T-cells are important for discovering and destroying cells that are infected with viruses or other pathogens. Baker's group studied cross-reactivity, the ability of different T-cell receptors which number perhaps a few hundred million in the body to recognize the vastly larger number of possible antigens produced by other cells. The process is important for dealing with viruses, cancers, autoimmunity, transplant rejection and other issues related to the immune system.

Most past studies considered the receptors on each cell as static components, but in fact the molecules move and adopt multiple structures. Baker's group found that the success or failure of the T-cell receptor to attach to a target cell's antigen involves complex movements in search of a compatible final structure. Different antigens produce different kinds of motion.

"What we're adding to the equation is how motion is involved," Baker said. "It both complicates as well as simplifies how we think about recognition. Different extents of motion can exist when you have different antigens being presented. It complicates our thinking about how diversity is presented to the immune system, yet simplifies our thinking about how diversity is accommodated by the immune system.

"Overall, we've got to consider flexibility when we think about structures in the immune system and structures in biology in general."

The static view long-favored in structural biology is shifting to a greater emphasis on protein dynamics, he says. For example, scientists have discovered that vaccines can help the immune system fight cancer, but vaccines that mimic biological structures can still fail if they do not take into account flexibility and dynamics.

"It probably will be one of the defining areas of biochemistry over the next 10 to 15 years – getting at the role of how biological molecules move and how that movement influences biology," Baker said.

Contact: Brian Baker, associate professor of Chemistry and Biochemistry, brian-baker@nd.edu, 574-631-9810 News

brian baker | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>