Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Noninvasive and accurate

A new method that allows absolute temperature mapping with a previously unmatched accuracy shows promise for biomedical applications

Researchers in Germany and the US have developed a new approach to magnetic resonance imaging (MRI) thermometry using encaged hyperpolarized xenon as a temperature sensor. The method allows absolute temperature mapping with an unprecedented accuracy of 0.1˚C at low and ultralow sensor concentrations.

The new technique, which has the potential to become a helpful tool in clinical diagnostics and therapy monitoring, is presented online in ChemPhysChem. According to Franz Schilling, now a researcher at the Technical University of Munich and lead author of the paper, the method benefits from all the advantages of MRI including its non-invasiveness and the ability to image in any scan orientation with good spatial and temporal resolution.

Many magnetic resonance parameters are inherently temperature-sensitive; for example, proton resonance frequency (PRF), diffusion coefficient or transverse and longitudinal relaxation times. The accuracy of many conventional thermometry methods such as PRF is however limited and although such techniques provide useful relative temperature results, MRI thermometry based on encapsulated hyperpolarized xenon appears to be a more promising technology for in vivo applications because it can be used to map absolute temperatures.

Hydrogen is the most frequently imaged nucleus in MRI, but any nucleus with a net nuclear spin can potentially be imaged, including xenon (129Xe). Such gaseous isotopes must be hyperpolarized before use as their net magnetization is too low to yield a good signal under normal conditions. Schilling and co-workers have introduced xenon sensors as a temperature contrast agent for MRI thermometry to gain both high accuracy and sensitivity. They have achieved this by hyperpolarization through spin exchange optical pumping, which increases the equilibrium net spin polarization by three to four orders of magnitude.

The new technique is based on the temperature-dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage. This shift is linear with a slope of 0.29 ppm per °C, which is almost 30 times higher than that of the proton resonance frequency that is currently used for MRI thermometry. According to Schilling, this new direct mapping concept allows absolute temperature mapping with a previously unmatched accuracy of 0.1˚C at a sensor concentration of 150 µM. But the researchers have also demonstrated an indirect temperature detection technique, via chemical exchange saturation transfer of hyperpolarized xenon (Hyper-CEST, introduced previously by co-author Leif Schröder who currently works at the Leibniz Institute for Molecular Pharmacology in Berlin), which makes temperature mapping with nanomolar agent concentrations as low as 10 nM possible. “This absolute temperature imaging concept offers high temperature accuracy at ultralow agent concentrations”, Schilling says. The new sensors consist of three major components: a cryptophane-A cage for hosting the xenon atom, a linker, and a peptide for sufficient water solubility.

Author: Franz Schilling, Alexander Pines, Lawrence Berkeley National Laboratory, Berkeley (USA),

Title: MRI Thermometry Based on Encapsulated Hyperpolarized Xenon

ChemPhysChem 2010, 11, No. 16, Permalink to the article:

Franz Schilling | Wiley-VCH
Further information:

Further reports about: MRI Noninvasive magnetic resonance temperature map

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>