Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Noncoding RNA may promote Alzheimer's disease

Researchers pinpoint a small RNA that spurs cells to manufacture a particular splice variant of a key neuronal protein, potentially promoting Alzheimer's disease (AD) or other types of neurodegeneration. The study appears in the May 30 issue of The Journal of Cell Biology (

Like a movie with an alternate ending, a protein can come in more than one version. Although scientists have identified numerous proteins and RNAs that influence alternative splicing, they haven't deciphered how cells fine-tune the process to produce specific protein versions. Four years ago, researchers identified a set of 30 small, noncoding RNAs that they suspected help regulate gene expression.

Italian researchers have now determined the function of one of the RNA snippets, known as 38A, that hails from a noncoding part of the gene that encodes the protein KCNIP4. KCNIP4 helps ensure that neurons fire impulses in a characteristic slow, repeating pattern. The researchers found that 38A spurs cells to produce an alternative splice variant of KCNIP4, Var IV, that disrupts this current, potentially leading to neurodegeneration.

KCNIP4 normally interacts with gamma-secretase, the enzyme complex that helps generate beta-amyloid (Abeta), a protein that accumulates in the brains of AD patients. But Var IV can't make the connection, possibly disturbing Abeta processing. Supporting that notion, the researchers found that levels of 38A were more than 10 times higher in brain cells from AD patients than in controls and that 38A hiked output of the more dangerous Abeta isoform Abeta 1-42.

About The Journal of Cell Biology

Founded in 1955, The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial deci-sions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit

Massone, S., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201011053.

Rita Sullivan | EurekAlert!
Further information:

Further reports about: Abeta JCB KCNIP4 RNA brain cell cell death noncoding synthetic biology

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>