Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA, NASA and Old Dominion Researchers Measure Impacts of Changing Climate on Ocean Biology

26.02.2010
Results of Northwest Atlantic Field Program Could Be Applied Worldwide
A three-year field program now underway is measuring carbon distributions and primary productivity in the Northwest Atlantic Ocean to help scientists worldwide determine the impacts of a changing climate on ocean biology and biogeochemistry. The study, Climate Variability on the East Coast (CliVEC), will also help validate ocean color satellite measurements and refine biogeochemistry models of ocean processes.

Researchers from NOAA, NASA and Old Dominion University are collaborating through an existing NOAA Fisheries Service field program, the Ecosystem Monitoring or EcoMon program. The EcoMon surveys are conducted six times each year by the Northeast Fisheries Science Center (NEFSC) at 120 randomly selected stations throughout the continental shelf and slope of the northeastern U.S., from Cape Hatteras, N.C., into Canadian waters to cover all of Georges Bank and the Gulf of Maine. This area is known as the Northeast U.S. continental shelf Large Marine Ecosystem.

The climate study team will participate in three annual EcoMon cruises aboard the 155-foot NOAA Fisheries Survey Vessel Delaware II, based at the NEFSC’s laboratory in Woods Hole, Mass. The most recent cruise returned to Woods Hole on February 18.

Findings from the climate impact project, funded by NASA, will help scientists better understand how annual and decadal-scale climate variability affects the growth of phytoplankton, which is the basis of the oceanic food chain. The project will also examine organic carbon distributions along the continental margin of the East Coast and collect data for ocean acidification studies.

John O’Reilly of the satellite ocean productivity group and Kimberly Hyde of the ecosystem assessment program at NEFSC’s Narragansett, R.I., laboratory are co-principal investigators on the CliVEC project. Laboratory colleague Jon Hare, an oceanographer and plankton specialist, oversees the EcoMon program and is a collaborator on the new climate study.

“The CliVEC program will provide a more complete understanding of the northeast U.S. shelf ecosystem,” said Hare. “It extends our EcoMon survey efforts, and we are excited about the new knowledge and advances in satellite models that we will all gain from this collaboration and pooling of resources.”

O’Reilly has had a long collaboration with NASA scientists in developing algorithms for processing data from ocean color remote sensors on satellites that provide global maps of ocean surface characteristics. The satellite-transmitted data can also be used to develop oceanic primary production models and algorithms that measure carbon distributions in the ocean.

Other lead investigators in the CliVEC project include Antonio Mannino from NASA’s Goddard Space Flight Center (GSFC), Margaret Mulholland from Old Dominion University (ODU), and David Lary from the NASA-affiliated University of Maryland Baltimore County Joint Center for Earth Systems Technology. The team of scientists from GSFC and ODU is conducting water sampling and experiments to quantify primary productivity and carbon distributions.

"Phytoplankton are the foundation of the food chain in the ocean and produce about half of the oxygen on Earth," said Mannino. "By understanding the distribution of phytoplankton populations and how they react to natural and anthropogenic forcing, we can better predict future responses of phytoplankton and possibly even fisheries."

The Northwest Atlantic location was chosen for the CliVEC study because it is the crossroads between major ocean circulation features like the Gulf Stream and the Labrador Current.

Discharges from rivers, seasonal changes in water column density stratification, the freshening of surface waters from melting of the Greenland ice sheet, and other climate-related factors can all alter ocean circulation patterns and affect the strength, timing and location of phytoplankton blooms, potentially decreasing annual primary production and changing ocean biology.

Scientific activities during the recent 18-day cruise included collecting water samples from the surface to the ocean floor for a variety of chemical measurements, and sampling to identify the incursion of Labrador Current water into the Gulf of Maine. Instruments were also deployed to measure sea surface temperatures and salinities and to collect data on chlorophyll, oxygen and nitrate levels, and the depth of light transmission for primary productivity.

In addition to the CliVEC activities, zooplankton samples were collected for the Census of Marine Zooplankton Project. Standard EcoMon sampling was also done, extending oceanographic and plankton time series that started in the early 1970s. Two observers were aboard to identify and count seabirds, and sightings of northern right whales and other whale species were recorded.

NOAA Fisheries Service is dedicated to protecting and preserving our nation’s living marine resources and their habitat through scientific research, management and enforcement. NOAA Fisheries Service provides effective stewardship of these resources for the benefit of the nation, supporting coastal communities that depend upon them, and helping to provide safe and healthy seafood to consumers and recreational opportunities for the American public.

NOAA understands and predicts changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages our coastal and marine resources. Visit us at http://www.noaa.gov or on Facebook at http://www.facebook.com/noaa.lubchenco.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>