Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrate as an antiperspirant

19.05.2011
Rising levels of nitrate and of the hormone abscisic acid signal to a plant that it needs to conserve water. How do these two transmitters achieve their effect? Plant researchers Rainer Hedrich and Dietmar Geiger from the University of Würzburg have found the answer.

If soil dries out, plants have to restrict their water consumption. To do this, they produce the hormone abscisic acid in their roots and send it along the vascular system to the leaves. Once there, the hormone works in conjunction with nitrate to ensure that the leaf pores, or stomata, close and thereby prevent the loss of any more valuable water through evaporation.

The main way in which plants lose water is through their stomata. Yet, these pores are indispensable, as without them plants would be unable to exchange carbon dioxide and other gases with the environment and, as a result, photosynthesis would not be possible, nor would growth. Plants therefore have to regulate the extent to which their stomata open to suit their needs.

Guard cells regulate leaf pore width

Whether stomata are closed or open depends on bean-shaped guard cells. These are found in the epidermis of the leaves, always with two lying opposite each other. When the guard cells are bulging with ions and water, they part and open the pore. As they go limp, the pore becomes smaller and smaller until finally this water vapor valve is completely closed.

During times of drought, the guard cells become the destination for the hormone abscisic acid. “Upon its arrival there, it binds to its receptor, which, in turn, regulates the anion channel SLAC1 via two enzymes,” says Professor Rainer Hedrich. As a consequence, ions and water flow out from the guard cells. This reduces the pressure somewhat, causing the pores to close and limiting the evaporation of water from the leaves.

Publication in “Science Signaling”

New findings relating to this regulatory mechanism are presented by Professor Rainer Hedrich and Dr. Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg in the current issue of the renowned journal “Science Signaling”. They describe in detail the nature of the anion channel SLAC1 as well as that of the newly discovered anion channel SLAH3. What is special about this channel is that it requires both abscisic acid and nitrate for its activation.

Nitrate as a co-transmitter with abscisic acid

Nitrate is known mainly as a component of agricultural fertilizer. Plants draw nitrate from the soil, transport it to the leaves, and use it there as a source of nitrogen for protein production. This process really gains momentum when photosynthesis is at its peak because it supplies the carbon structure used by the plant as a basic building block for proteins. When photosynthesis is working well, the leaves are also capable of processing a lot of nitrate.

Nitrate finds its way from the roots to the leaves dissolved in water. The plant can tailor its nitrate replenishment to meet its needs by increasing or restricting the flow of water. It does this by opening or closing its valves, enabling it to regulate the pull that is exerted by water evaporating via the leaves right down into the roots.

Guard cells measure nitrate content in the leaf

“For this regulation to work, the guard cells must be capable of measuring the nitrate content in their vicinity,” says Professor Hedrich. If the nitrate content in the leaf rises sharply, this signals to the plant that it cannot process any more nitrate for the time being because photosynthesis is not working optimally. It is able to do without carbon dioxide at this time, and the stomata close, thereby conserving water. In this case, nitrate acts as an antiperspirant.

The Würzburg biophysicists have identified the anion channel SLAH3 as the sensor for the process. If the nitrate content in the guard cells exceeds a certain threshold and, at the same time, there is a critical quantity of abscisic acid, the channel is activated and sets the closure of the leaf pores in motion.

Anion channel as a multisensory regulator

Hedrich draws the following conclusion: “This anion channel is a multisensory interface. It measures the ratio of water consumption, nitrate content, and photosynthetic performance of the plant, integrates the measurements, and regulates the aperture of the stomata in response.” It enables the plant to keep the loss of water down to a minimum during times of drought without excessively restricting the photosynthetic performance at the same time.

"Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1”, Dietmar Geiger, Tobias Maierhofer, Khaled A.S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis und Rainer Hedrich, Science Signaling, 17. Mai 2011, Vol. 4, Issue 173, DOI: 10.1126/scisignal.2001346

Contact

Prof. Dr. Rainer Hedrich, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Dr. Dietmar Geiger, T +49 (0)931 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: SLAC1 SLAH3 Signaling abscisic acid carbon dioxide nitrate water consumption

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>