Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrate as an antiperspirant

19.05.2011
Rising levels of nitrate and of the hormone abscisic acid signal to a plant that it needs to conserve water. How do these two transmitters achieve their effect? Plant researchers Rainer Hedrich and Dietmar Geiger from the University of Würzburg have found the answer.

If soil dries out, plants have to restrict their water consumption. To do this, they produce the hormone abscisic acid in their roots and send it along the vascular system to the leaves. Once there, the hormone works in conjunction with nitrate to ensure that the leaf pores, or stomata, close and thereby prevent the loss of any more valuable water through evaporation.

The main way in which plants lose water is through their stomata. Yet, these pores are indispensable, as without them plants would be unable to exchange carbon dioxide and other gases with the environment and, as a result, photosynthesis would not be possible, nor would growth. Plants therefore have to regulate the extent to which their stomata open to suit their needs.

Guard cells regulate leaf pore width

Whether stomata are closed or open depends on bean-shaped guard cells. These are found in the epidermis of the leaves, always with two lying opposite each other. When the guard cells are bulging with ions and water, they part and open the pore. As they go limp, the pore becomes smaller and smaller until finally this water vapor valve is completely closed.

During times of drought, the guard cells become the destination for the hormone abscisic acid. “Upon its arrival there, it binds to its receptor, which, in turn, regulates the anion channel SLAC1 via two enzymes,” says Professor Rainer Hedrich. As a consequence, ions and water flow out from the guard cells. This reduces the pressure somewhat, causing the pores to close and limiting the evaporation of water from the leaves.

Publication in “Science Signaling”

New findings relating to this regulatory mechanism are presented by Professor Rainer Hedrich and Dr. Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg in the current issue of the renowned journal “Science Signaling”. They describe in detail the nature of the anion channel SLAC1 as well as that of the newly discovered anion channel SLAH3. What is special about this channel is that it requires both abscisic acid and nitrate for its activation.

Nitrate as a co-transmitter with abscisic acid

Nitrate is known mainly as a component of agricultural fertilizer. Plants draw nitrate from the soil, transport it to the leaves, and use it there as a source of nitrogen for protein production. This process really gains momentum when photosynthesis is at its peak because it supplies the carbon structure used by the plant as a basic building block for proteins. When photosynthesis is working well, the leaves are also capable of processing a lot of nitrate.

Nitrate finds its way from the roots to the leaves dissolved in water. The plant can tailor its nitrate replenishment to meet its needs by increasing or restricting the flow of water. It does this by opening or closing its valves, enabling it to regulate the pull that is exerted by water evaporating via the leaves right down into the roots.

Guard cells measure nitrate content in the leaf

“For this regulation to work, the guard cells must be capable of measuring the nitrate content in their vicinity,” says Professor Hedrich. If the nitrate content in the leaf rises sharply, this signals to the plant that it cannot process any more nitrate for the time being because photosynthesis is not working optimally. It is able to do without carbon dioxide at this time, and the stomata close, thereby conserving water. In this case, nitrate acts as an antiperspirant.

The Würzburg biophysicists have identified the anion channel SLAH3 as the sensor for the process. If the nitrate content in the guard cells exceeds a certain threshold and, at the same time, there is a critical quantity of abscisic acid, the channel is activated and sets the closure of the leaf pores in motion.

Anion channel as a multisensory regulator

Hedrich draws the following conclusion: “This anion channel is a multisensory interface. It measures the ratio of water consumption, nitrate content, and photosynthetic performance of the plant, integrates the measurements, and regulates the aperture of the stomata in response.” It enables the plant to keep the loss of water down to a minimum during times of drought without excessively restricting the photosynthetic performance at the same time.

"Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1”, Dietmar Geiger, Tobias Maierhofer, Khaled A.S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis und Rainer Hedrich, Science Signaling, 17. Mai 2011, Vol. 4, Issue 173, DOI: 10.1126/scisignal.2001346

Contact

Prof. Dr. Rainer Hedrich, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Dr. Dietmar Geiger, T +49 (0)931 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: SLAC1 SLAH3 Signaling abscisic acid carbon dioxide nitrate water consumption

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>