Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIH-funded scientists find 2009 H1N1 pandemic influenza vaccine protects mice from 1918 flu virus

WHAT: Mice injected with a 2009 H1N1 pandemic influenza vaccine and then exposed to high levels of the virus responsible for the 1918 influenza pandemic do not get sick or die, report scientists funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The new vaccine works against the old virus because the 1918 and the 2009 strains of H1N1 influenza share features that allow vaccine-generated antibodies to recognize both viruses.

To learn more, similar challenge studies need to be conducted in other animals, including monkeys, but the investigators say their results suggest people who are vaccinated against 2009 H1N1 influenza or were exposed to the virus could have similarly cross-protective antibodies against the 1918 strain of H1N1. This finding, they add, should help allay concerns about the potential consequences of an accidental release of the 1918 influenza virus from high-containment laboratories or its possible use as a bioterror weapon.

Adolfo Garcia-Sastre, Ph.D., of Mount Sinai School of Medicine, New York, led the research. Groups of mice were exposed to lethal amounts of the 1918 influenza virus 14 or 28 days after receiving a 2009 H1N1 influenza vaccine; a seasonal H3N2 influenza vaccine (not designed to protect against H1N1 virus); or no vaccine. All of the 2009-H1N1-vaccinated mice survived. Unvaccinated mice and mice that received the H3N2 vaccine all died. (A group of mice vaccinated with a seasonal flu vaccine designed to protect against a 2007 strain of H1N1 were mostly protected from lethal challenge; 80 percent of the mice in that group survived.)

The researchers also injected mice with blood serum taken from people who had received 2009 H1N1 influenza vaccine. The serum, which contained antibodies against 2009 H1N1 influenza virus, protected the mice from death when they were later exposed to the 1918 H1N1 influenza virus. All the experiments involving the 1918 virus were conducted under biosafety-level-3 conditions.

More information about NIAID research on influenza is available at

ARTICLE: RA Medina et al. Pandemic 2009 H1N1 vaccine protects against 1918 Spanish influenza virus. Nature Communications DOI: 10.1038/ncomms1026 (2010).

WHO: Anthony S. Fauci, M.D., Director, NIAID Rachelle Salomon, Ph.D., program officer for basic research and diagnostics, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID, are available for comment.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, 301-402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit

Anne A. Oplinger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>