Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Cells Make Fat

07.10.2008
The discovery of an important fat precursor cell may explain how changes in the numbers of fat cells might increase and lead to obesity.

To understand where fat comes from, you have to start with a skinny mouse. By using such a creature, and observing the growth of fat after injections of different kinds of immature cells, scientists at the Howard Hughes Medical Institute and Rockefeller University have discovered an important fat precursor cell that may in time explain how changes in the numbers of fat cells might increase and lead to obesity.

The finding, published online in this week's issue of the journal Cell, could also have implications for understanding how fat cells affect conditions such as diabetes and cardiovascular disease.

"The identification of white adipocyte progenitor cells provides a means for identifying factors that regulate the proliferation and differentiation of fat cells," says senior author Jeffrey Friedman, who is the Marilyn M. Simpson Professor at Rockefeller and a Howard Hughes Medical Institute investigator.

Obesity, a major public health problem in the United States and increasingly in much of the Western world, results, in part, from an increase in the mass and number of white fat cells. Because white fat cells are post-mitotic, meaning that they cannot divide, scientists have hypothesized that a population of fat precursor cells must exist in the fat depot in order to produce new fat cells. But identifying these fat precursor cells has been difficult.

With the assistance of researchers in Rockefeller's Flow Cytometry Resource Center, first author Matt Rodeheffer, a postdoctoral associate in Friedman's Laboratory of Molecular Genetics, used a cell sorting technique called fluorescence-activated cell sorting, or FACS, to search for cell populations that could produce fat in cell cultures and identified two such populations.

To determine if these cells could develop into fat cells in living animals, Rodeheffer injected these cell populations into the fat depots of a genetically engineered mouse, developed at NIH, called fatless, which lacks white fat and mimics a condition in humans called lipodystrophy that also results in diabetes.

Rodeheffer found that only one of the isolated cell populations, which express the CD24 cell-surface marker protein, produced fat tissue in the fatless mouse. This population normally represents only .08 percent of the non-adipocyte population in adipose tissue.

An imaging assay recently developed by co-author Kivanç Birsoy, a graduate student in Friedman's laboratory, enabled Rodeheffer to observe the CD24-expressing cells form fat in a living animal. Birsoy's technique uses another animal strain called the leptin-luciferase mouse, in which the visibly detectable marker luciferase is expressed under the control of the promoter of the gene that produces the hormone leptin. In this mouse strain the luciferase marker gene only switches on in mature fat cells, and provides a non-invasive way of watching immature fat cell precursors develop into mature fat cells in a living animal over time.

"I injected the CD24+ cells - which represent a very small population of cells in normal adipose tissue - into a site where the fat would normally develop in the fatless mouse, and I found that a normal sized fat depot forms at the site of injection," says Rodeheffer.

Rodeheffer also found that the injection of the fat-producing cells corrects the fatless mouse's diabetes, and the fat cells secrete adipocyte-specific signaling proteins called cytokines. Both of these results confirm that the cells produced in the fatless mouse are functional fat cells.

"This finding gives us a better understanding of the basic biology of adipose tissue and opens the door for us and for other researchers to be able to study these cells in living animals and determine the molecular factors that regulate formation of adipose tissue," says Rodeheffer. "We then can potentially study how the growth and differentiation of these cells are regulated in obesity and determine whether or not the molecular events that are involved in the regulation of adipose tissue are contributing factors to other pathologies, such as diabetes and cardiovascular disease, that are associated with obesity and metabolic syndrome."

Joseph Bonner | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>