Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Protein Function Linked to Breast Cancer

15.07.2010
UA researchers participated in the discovery of an unexpected role played by a protein molecule, making it a candidate for a biomarker or drug target for breast cancer.

University of Arizona researchers are part of an international team that has discovered a new cellular mechanism that is associated with the development of breast cancer. Identifying and understanding novel components of signaling networks, the scientists say, are likely to reveal new therapeutic targets for personalized medicine.

"This could be a tool for staging breast cancer biopsies or serve as a prognostic marker," said Sourav Ghosh of the UA College of Medicine – Phoenix. "But more studies will be required to establish these connections more firmly."

Team members made their discovery by looking in unlikely places. They discovered a novel component of an important cellular signaling network known as the NF-kB pathway. A known protein called Rap1, they found, performs tasks in parts of the cell where, according to conventional wisdom, it was not supposed to be. A group led by Ghosh found that Rap1 interacts with the NF-kB pathway in breast cancer cells, in addition to its known function inside the cell nucleus. Their results show that the previously unrecognized function of Rap1 protein in the NF-kB network can contribute to the pathology of breast cancers. The researchers report their findings in the advance online publication of the Nature Cell Biology July issue.

The cells in our bodies constantly sense their environment and respond appropriately. For example, if pathogens invade the body, cells will respond by generating an inflammatory environment to fight the pathogen. This is achieved by intricate molecular circuits within cells that sense and relay external signals and orchestrate the cellular response. Aberrant functioning of these cellular switch boards can lead to diseases including autoimmune disorders and cancer.

In the study, an the scientists set out to better understand the molecular workings underlying inflammation. Inflammation, the body's primary line of defense against disease-causing microbes and parasites, is a highly complex and tightly regulated biochemical process involving a myriad of specialized cells communicating with each other through an arsenal of signaling molecules. The team systematically screened 17,000 genes to single out those that interact with the NF-kB protein complex and activate the inflammation pathway.

NF-kB, which stands for "Nuclear Factor Kappa B," can be thought of as a major hub in the biomolecular pathways involved in the inflammation response. The NF-kB protein is part of the molecular inventory of almost every cell type, where it acts as a multifunctional switch, binding a variety of other specialized molecules exchanging signals between the cell's surface and the genetic material inside the nucleus. The central importance of NF-kB for inflammation, autoimmune diseases and cancer makes it one of the most studied molecules and one of very few to which entire scientific meetings are dedicated.

"Surprisingly, we found Rap1 outside the cell nucleus and as part of the NF-kB signaling pathway," said Ghosh, who was involved in planning and executing the cancer research aspect of the study.

Ghosh is an assistant professor at the UA College of Medicine – Phoenix and a member of the Arizona Cancer Center. He also is an adjunct associate investigator at the Translational Genomics Research Institute, or TGen, in Phoenix. His group was comprised of researchers at TGen and Barrow Neurological Institute/St. Joseph’s Hospital in Phoenix.

Prior to the discovery, scientists believed that Rap1 was limited to structures at the ends of chromosomes. Tucked inside the cell nucleus, chromosomes consist of tightly wound threads of DNA that carry an organism's genetic information. In contrast to its original role, in which Rap1 has been found to stabilize the ends of the chromosomes, scientists still have to figure out what the protein is doing when it is outside the nucleus.

"The exact role of NF-kB in cancer is not well understood, but our study sheds a little bit of light on it," Ghosh said. "Rap1 and NF-kB activity drive each other in a positive feedback loop. Since NF-kB signaling is hyperactive in breast cancer cells, we think that Rap1 might be one of the factors contributing to that hyperactivity."

His group found increased Rap1 levels in tissue samples of breast cancer cells of the more common types, the ductal and lobular carcinomas. Most importantly, Ghosh and his coworkers discovered that higher grade tumors had higher levels of Rap1.

This work was supported in part by grants from the Agency for Science Technology and Research, Singapore; the Leducq Foundation; Meriaux Foundation; Ellison Medical Foundation; Ipsen/Biomeasure, Sanofi Aventis; and the H.N. and Frances C. Berger Foundation.

Reference: Telomere-independent Rap1 is an IKK adaptor and regulates NF-êB-dependent gene expression. Nature Cell Biology, July 2010. Hsiangling Teo, Sourav Ghosh, Hendrik Luesch, Arkasubhra Ghosh, Ee Tsin Wong, Najib Malik, Anthony Orth, Paul de Jesus, Anthony S. Perry, Jeffrey D. Oliver, Nhan L. Tran, Lisa J. Speiser, Marc Wong, Enrique Saez, Peter Schultz, Sumit K. Chanda, Inder M. Verma & Vinay Tergaonkar

CONTACTS:
Daniel Stolte, University Communications (520-626-4402; stolte@email.arizona.edu)

Sourav Ghosh, UA College of Medicine - Phoenix (602-827-2173; sghosh1@email.arizona.edu)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>