Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered gene enables fish to ‘disappear’

01.11.2010
Researchers led by Vanderbilt's Roger Cone, Ph.D., have discovered a new member of a gene family that has powerful influences on pigmentation and the regulation of body weight.

The gene is the third member of the agouti family. Two agouti genes have been identified previously in humans. One helps determine skin and hair color, and the other may play an important role in obesity and diabetes.

The new gene, called agrp2, has been found exclusively in bony fish, including zebrafish, trout and salmon. The protein it encodes enables fish to change color dramatically to match their surroundings, the researchers report this week in the early edition of the Proceedings of the National Academy of Sciences (PNAS).

“When my graduate student, Youngsup Song, discovered a third agouti protein in the fish pineal gland, an organ that regulates daily rhythms in response to light, we initially thought we had found the pathway that regulates hunger diurnally,” said Cone, chair of the Department of Molecular Physiology & Biophysics and director of the Vanderbilt Institute for Obesity and Metabolism.

“That is the mechanism that makes you hungry during the day, but not at night,” he continued. “However, Chao Zhang, a graduate student who followed up the study, ultimately discovered that this agouti protein … is involved in the rapid pigment changes that allow fish to adapt to their environment.”

This phenomenon, called background adaptation, also has been observed in mammals. The coat of the arctic hare, for example, turns from brown in summer to white camouflage against the winter snow.

In contrast to mammals that have to grow a new coat to adapt to a changing environment, fish, amphibians and reptiles can change their skin color in a matter of minutes.

The first agouti gene, which produces the striped “agouti” pattern in many mammals, was discovered in 1993. The same year, Cone and his colleagues at Oregon Health Sciences University in Portland reported the discovery of the gene that encoded the melanocortin-1 receptor, a key player in the pigmentation story.

They demonstrated that the agouti protein prevented the melanocortin-1 receptor in melanocytes (pigment cells) in the skin from switching on production of black-brown pigment, and instead shifted the pigment to yellow-red hues.

The second agouti gene encodes agouti-related protein (AgRP), which blocks a melanocortin receptor in the brain. It prevents the melanocortin-4 receptor from inhibiting food intake, and thus stimulates eating.

In the current paper, Cone's group reports that the newly discovered protein, AgRP2, regulates expression of the prohormone genes pmch and pmchl, precursors to melanin-concentrating hormone, which has a pigment-lightening effect.

“Together, the versatile agouti proteins and melanocortin receptors are responsible for regulation of body weight, the banded patterns of mammalian coats, and even red hair in most people,” Cone said. The current work shows that agouti proteins are also involved in the camouflage mechanisms used in thousands of fish species.

Cone, who came to Vanderbilt in 2008, has spent most of his career studying how the melanocortin receptors in the brain regulate body weight. He and his colleagues have published more than three dozen papers elucidating elements of this complex signaling system.

Zhang is the first author of the PNAS paper, a collaborative effort of scientists from the Salk Institute for Biological Sciences, the University of California at Santa Cruz, the University of Oregon, as well as Vanderbilt.

The study was supported by the National Institutes of Health and the Bristol-Myers Squibb Foundation.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu
http://www.mc.vanderbilt.edu/reporter/index.html?ID=9669

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>