Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered gene enables fish to ‘disappear’

01.11.2010
Researchers led by Vanderbilt's Roger Cone, Ph.D., have discovered a new member of a gene family that has powerful influences on pigmentation and the regulation of body weight.

The gene is the third member of the agouti family. Two agouti genes have been identified previously in humans. One helps determine skin and hair color, and the other may play an important role in obesity and diabetes.

The new gene, called agrp2, has been found exclusively in bony fish, including zebrafish, trout and salmon. The protein it encodes enables fish to change color dramatically to match their surroundings, the researchers report this week in the early edition of the Proceedings of the National Academy of Sciences (PNAS).

“When my graduate student, Youngsup Song, discovered a third agouti protein in the fish pineal gland, an organ that regulates daily rhythms in response to light, we initially thought we had found the pathway that regulates hunger diurnally,” said Cone, chair of the Department of Molecular Physiology & Biophysics and director of the Vanderbilt Institute for Obesity and Metabolism.

“That is the mechanism that makes you hungry during the day, but not at night,” he continued. “However, Chao Zhang, a graduate student who followed up the study, ultimately discovered that this agouti protein … is involved in the rapid pigment changes that allow fish to adapt to their environment.”

This phenomenon, called background adaptation, also has been observed in mammals. The coat of the arctic hare, for example, turns from brown in summer to white camouflage against the winter snow.

In contrast to mammals that have to grow a new coat to adapt to a changing environment, fish, amphibians and reptiles can change their skin color in a matter of minutes.

The first agouti gene, which produces the striped “agouti” pattern in many mammals, was discovered in 1993. The same year, Cone and his colleagues at Oregon Health Sciences University in Portland reported the discovery of the gene that encoded the melanocortin-1 receptor, a key player in the pigmentation story.

They demonstrated that the agouti protein prevented the melanocortin-1 receptor in melanocytes (pigment cells) in the skin from switching on production of black-brown pigment, and instead shifted the pigment to yellow-red hues.

The second agouti gene encodes agouti-related protein (AgRP), which blocks a melanocortin receptor in the brain. It prevents the melanocortin-4 receptor from inhibiting food intake, and thus stimulates eating.

In the current paper, Cone's group reports that the newly discovered protein, AgRP2, regulates expression of the prohormone genes pmch and pmchl, precursors to melanin-concentrating hormone, which has a pigment-lightening effect.

“Together, the versatile agouti proteins and melanocortin receptors are responsible for regulation of body weight, the banded patterns of mammalian coats, and even red hair in most people,” Cone said. The current work shows that agouti proteins are also involved in the camouflage mechanisms used in thousands of fish species.

Cone, who came to Vanderbilt in 2008, has spent most of his career studying how the melanocortin receptors in the brain regulate body weight. He and his colleagues have published more than three dozen papers elucidating elements of this complex signaling system.

Zhang is the first author of the PNAS paper, a collaborative effort of scientists from the Salk Institute for Biological Sciences, the University of California at Santa Cruz, the University of Oregon, as well as Vanderbilt.

The study was supported by the National Institutes of Health and the Bristol-Myers Squibb Foundation.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu
http://www.mc.vanderbilt.edu/reporter/index.html?ID=9669

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>