Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theorem helps reveal tuberculosis' secret

23.02.2016

Team led by Rice University develops approach to uncover missing connections in biochemical networks

A new methodology developed by researchers at Rice and Rutgers universities could help scientists understand how and why a biochemical network doesn't always perform as expected. To test the approach, they analyzed the stress response of bacteria that cause tuberculosis and predicted novel interactions.


Upon infection with Mycobacterium tuberculosis bacilli (labeled in red), macrophages (nuclei stained blue) accumulate lipid droplets (green). The network controlling the expression of an enzyme that is central to bacterial metabolic switching to lipids as nutrients during infection is the topic of a new paper by researchers at Rice and Rutgers universities.

Credit: Emma Rey-Jurado/Public Health Research Institute

The results are described in a PLOS Computational Biology paper published today.

"Over the last several decades, bioscientists have generated a vast amount of information on biochemical networks, a collection of reactions that occur inside living cells," said principal investigator Oleg Igoshin, a Rice associate professor of bioengineering.

"We are beginning to understand how these networks control the dynamics of a biological response, that is, the precise nature of how a concentration of biomolecules changes with time," he said. "But to date, only a few general rules that relate the dynamical responses with the structure of the underlying networks have been formulated. Our theorem provides another such rule and therefore can be widely applicable."

The theorem uses approaches from control theory, an interdisciplinary branch of engineering and mathematics that deals with the behavior of dynamical systems that have inputs. The theorem formulates a condition for an underlying biochemical network to display non-monotonic dynamics in response to a monotonic trigger. For instance, it would explain the expression of a gene that first speeds up, then slows down and returns to normal. (Monotonic responses always increase or always decrease; non-monotonic responses increase and then decrease, or vice-versa.)

The theorem states that a non-monotonic response is only possible if the system's output receives conflicting messages from the input, such that one branch of the pathway activates it and another one deactivates it.

If a non-monotonic response is observed in a system that appears to be missing such conflicting paths, it would imply that some biochemical interactions remain undiscovered, Igoshin said.

"What we do is figure out the mechanism for a dynamic phenomenon that people have observed but can't explain and that seems to be inconsistent with the current state of knowledge," he said.

The theorem was formulated and proven in collaboration with Eduardo Sontag, a distinguished professor in the Department of Mathematics and Center for Quantitative Biology at Rutgers. Sontag focuses on general principles derived from feedback control analysis of cell signaling pathways and genetic networks.

The researchers applied their theory to explain how Mycobacterium tuberculosis responds to stresses that mimic those the immune system uses to fight the pathogen. Igoshin said M. tuberculosis is a master in surviving such stresses. Instead of dying, they become dormant Trojan horses that future conditions may reactivate.

According to the World Health Organization, a third of the world's population is infected by the tuberculosis bacteria, though the disease kills only a fraction of those infected.

"The good thing is that 95 percent of infected people don't have symptoms," said Joao Ascensao, a Rice senior majoring in bioengineering and first author of the paper. "The bad thing is you can't kill the bacteria. And then if you get immunodeficiency, due to HIV, starvation or other things, you're out of luck because the disease will reactivate."

Ascensao said M. tuberculosis is hard to grow and work with in a molecular biology setting. "A generation of E. coli takes 20 minutes to grow, but for M. tuberculosis, a generation takes from 24 hours to over 100 hours when it goes latent," he said. "So even though we have this really sparse data, the theory allowed us to uncover what's happening behind the scenes."

The study was motivated by a 2010 publication by Marila Gennaro, a professor of Medicine in the Public Health Research Institute at Rutgers, and Pratik Datta, a research scientist in her lab, who are also co-authors of the new paper. Their results showed that as M. tuberculosis gradually runs out of oxygen, the expression of some genes would suddenly rise and then fall back. They characterized the biochemical network that controls the expression of these non-monotonic genes, but the mechanism of the dynamical response was not understood.

"It didn't make sense to me intuitively," Igoshin said. "At first I couldn't prove it mathematically, but then Sontag's theorem allowed us to conclude that some biochemical interactions were missing in the underlying network."

Ascensao and Baris Hancioglu, then a postdoc in Igoshin's lab and now a bioinformatics specialist at Ohio State University, built computer models and ran simulations of oxygen-starved M. tuberculosis. Their results suggested a few possible solutions that were tested in the follow-up experiments by Gennaro's group.

Eventually the simulations predicted a new interaction that could explain the dynamics of the glyoxylate shunt genes that control the metabolic transition network known to be important to the bacteria's virulence.

"Researchers found that the hypoxic (oxygen-starved) signal would lead bacteria to switch from one type of food to a different type of food," Igoshin said. "They used to eat sugars, but they'd start eating the fat accumulated inside of infected macrophages, a type of immune cell. It looks like this switch might be associated with going from an active bacterium to a latent, dormant bacterium that's stable and doesn't cause any symptoms."

The researchers argued that the stress-induced activation of adaptive metabolic pathways involving glyoxylate genes is transient, increasing only until there's enough of the protein present to achieve stability. "If these hypotheses are correct," they wrote, "drugs blocking negative interactions responsible for non-monotonic dynamics could in principle destabilize transitions to latency or trigger reactivation."

###

The research was supported by the National Institutes of Health. The researchers used the National Science Foundation-supported supercomputing resources administered by Rice's Ken Kennedy Institute for Information Technology.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Read the open-access paper at http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004741

This news release can be found online at http://news.rice.edu/2016/02/22/new-theorem-helps-reveal-tuberculosis-secret-2/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Oleg Igoshin Research Group: http://igoshin.rice.edu

Rice Department of Bioengineering: http://bioe.rice.edu

Images for download:

http://news.rice.edu/files/2016/02/0222_TB-1-WEB-2com3pq.jpg

Rice senior Joao Ascensao, left, and bioengineer Oleg Igoshin led a team to reveal hidden details about gene-expression dynamics using the bacteria that causes tuberculosis as a test model. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/02/0222_TB-3-WEB-2jy0567.jpg

Upon infection with Mycobacterium tuberculosis bacilli (labeled in red), macrophages (nuclei stained blue) accumulate lipid droplets (green). The network controlling the expression of an enzyme that is central to bacterial metabolic switching to lipids as nutrients during infection is the topic of a new paper by researchers at Rice and Rutgers universities. (Credit: Emma Rey-Jurado/Public Health Research Institute)

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>