Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study on the regulation of seed dormancy in plants / Researchers decode function of protein

13.07.2017

Seed dormancy helps to determine whether plants successfully reproduce. An international team of researchers now has some new findings on molecular control. One of the things the researchers show is how two signalling pathways which lead to seed dormancy are connected with each other.

For plants, seed dormancy has a particular importance. It ensures that a seed does not germinate outside season – for example during warm weather in winter – but only when the environmental conditions enable the seedlings to survive.


Dr. Guillaume Née and Prof. Iris Finkemeier hold up the objects of their research: specimens of the thale cress (the small plants) which they have been analysing. Growing in the large pots are rapeseed plants. The DOG1 protein is conserved in rapeseed as well.

© WWU - Peter Grewer

An international team of researchers, led by Dr. Wim Soppe at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne, Dr. Guillaume Née and Prof. Iris Finkemeier at the University of Münster (WWU) has now shown, for the first time, the role that is played by a protein called DOG1, interacting with regulatory enzymes, in controlling seed dormancy. DOG1 stands for "delay of germination". The study has been published in the current online issue of the "Nature Communications" journal.

"Seed dormancy is controlled by the plants’ internal machinery, as well as by environmental influences," explains Guillaume Née (WWU, MPIPZ), lead author of the study. "Humans have influenced this control in many crop plants as a result of breeding measures." In order to ensure a faster and more even germination of seeds, cultivated plants were selected which had a low seed dormancy.

"The seed dormancy must not be too low, though, or there can be unwanted side-effects," says Née. "What can happen, for example, is that barley seeds germinate at the mother plant. That makes them unusable." So knowing how seed dormancy is regulated is also of interest for crop breeding in farming, he adds. "The better we know the molecular processes, the more we can influence them in a targeted way."

The regulation of seed dormancy has long been a subject of research and some aspects of it are already known – for example, the researchers know that DOG1 and the plant hormone abscisic acid are involved. The more DOG1 protein is produced in the plant, the longer seed dormancy lasts. If the protein is not present, there is no seed dormancy at all, and germination occurs immediately. Whereas the function of abscisic acid is known quite precisely, the molecular function of DOG1 was not clear up to now.

Now, for the first time, taking the example of thale cress (Arabidopsis thaliana), the researchers have been able to explain the interplay between DOG1 and two different protein phosphatases, special regulatory enzymes of the abscisic acid signalling pathway.

With the aid of genetic analyses, and after carrying out comprehensive protein-protein interaction studies, the team of researchers have been able to provide evidence that DOG1 inhibits the function of both phosphatases. In other words, both phosphatases play an important role in controlling seed dormancy. "This work provides an answer to the long-unanswered question: How are the DOG1 signalling pathway and the abscisic acid-mediated signalling pathway – which both lead to seed dormancy – connected to each other?" says Guillaume Née.

The work was funded by the Max Planck Society.

Original publication:

Née G. et al. (2017): Delay of germination requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications 8, Article number: 72; doi:10.1038/s41467-017-00113-6

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-muenster.de/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>