Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study on the regulation of seed dormancy in plants / Researchers decode function of protein

13.07.2017

Seed dormancy helps to determine whether plants successfully reproduce. An international team of researchers now has some new findings on molecular control. One of the things the researchers show is how two signalling pathways which lead to seed dormancy are connected with each other.

For plants, seed dormancy has a particular importance. It ensures that a seed does not germinate outside season – for example during warm weather in winter – but only when the environmental conditions enable the seedlings to survive.


Dr. Guillaume Née and Prof. Iris Finkemeier hold up the objects of their research: specimens of the thale cress (the small plants) which they have been analysing. Growing in the large pots are rapeseed plants. The DOG1 protein is conserved in rapeseed as well.

© WWU - Peter Grewer

An international team of researchers, led by Dr. Wim Soppe at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne, Dr. Guillaume Née and Prof. Iris Finkemeier at the University of Münster (WWU) has now shown, for the first time, the role that is played by a protein called DOG1, interacting with regulatory enzymes, in controlling seed dormancy. DOG1 stands for "delay of germination". The study has been published in the current online issue of the "Nature Communications" journal.

"Seed dormancy is controlled by the plants’ internal machinery, as well as by environmental influences," explains Guillaume Née (WWU, MPIPZ), lead author of the study. "Humans have influenced this control in many crop plants as a result of breeding measures." In order to ensure a faster and more even germination of seeds, cultivated plants were selected which had a low seed dormancy.

"The seed dormancy must not be too low, though, or there can be unwanted side-effects," says Née. "What can happen, for example, is that barley seeds germinate at the mother plant. That makes them unusable." So knowing how seed dormancy is regulated is also of interest for crop breeding in farming, he adds. "The better we know the molecular processes, the more we can influence them in a targeted way."

The regulation of seed dormancy has long been a subject of research and some aspects of it are already known – for example, the researchers know that DOG1 and the plant hormone abscisic acid are involved. The more DOG1 protein is produced in the plant, the longer seed dormancy lasts. If the protein is not present, there is no seed dormancy at all, and germination occurs immediately. Whereas the function of abscisic acid is known quite precisely, the molecular function of DOG1 was not clear up to now.

Now, for the first time, taking the example of thale cress (Arabidopsis thaliana), the researchers have been able to explain the interplay between DOG1 and two different protein phosphatases, special regulatory enzymes of the abscisic acid signalling pathway.

With the aid of genetic analyses, and after carrying out comprehensive protein-protein interaction studies, the team of researchers have been able to provide evidence that DOG1 inhibits the function of both phosphatases. In other words, both phosphatases play an important role in controlling seed dormancy. "This work provides an answer to the long-unanswered question: How are the DOG1 signalling pathway and the abscisic acid-mediated signalling pathway – which both lead to seed dormancy – connected to each other?" says Guillaume Née.

The work was funded by the Max Planck Society.

Original publication:

Née G. et al. (2017): Delay of germination requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications 8, Article number: 72; doi:10.1038/s41467-017-00113-6

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-muenster.de/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>