Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on microbes’ evolution

12.09.2014

Two North­eastern Uni­ver­sity researchers and their inter­na­tional col­leagues have cre­ated an advanced model aimed at exploring the role of neu­tral evo­lu­tion in the bio­geo­graphic dis­tri­b­u­tion of ocean microbes.

Their find­ings were pub­lished Thursday in the journal Sci­ence. The paper—titled “Bio­geo­graphic pat­terns in ocean microbes emerge in a neu­tral agent-​​based model”—was co-​​authored by Ferdi Hell­weger, a micro­bial ecology expert and an asso­ciate pro­fessor of civil and envi­ron­mental engi­neering; his doc­toral stu­dent Neil Fredrick, PhD’15; and oceanog­ra­pher Erik van Sebille of Australia’s Uni­ver­sity of New South Wales.


The findings, Hellweger says, shed light on how ocean microbes may respond to global climate change. Photo by Kristie Gillooly.

Over the past sev­eral decades, ecol­o­gists have come to under­stand that both nat­ural selec­tion and neu­tral evolution—that vari­a­tion within and between species is caused by genetic drift and random mutations—play a role in the bio­geo­graphic pat­terns of ocean microbes.

In this study, Hell­weger et al. quan­ti­fied the role of neu­tral processes by sim­u­lating divi­sion, muta­tion, and death of some 100,000 indi­vidual marine bac­teria cells with full genomes in a global sur­face ocean cir­cu­la­tion model. They ran the model for up to 100,000 years and then ana­lyzed the output using advanced DNA align­ment algorithms.

... more about:
»DNA »Oceanic »Over »Wales »death »microbes »oceans »species

Their results flew in the face of the long held notion that microbes are infi­nitely mobile—that the same cells could be found any­where in the world’s oceans, unhin­dered by geo­graphic bound­aries. On the con­trary, the researchers found that microbes evolve faster than the ocean cir­cu­la­tion can dis­perse them, leading to substantial—and dynamic— bio­geo­graphic pat­terns in their sur­face ocean pop­u­la­tion.

Microbes differ between provinces because of neu­tral evo­lu­tion and dis­persal lim­i­ta­tion,” said Hell­weger, whose ongoing research on this topic is sup­ported by grants from the National Sci­ence Foun­da­tion and the National Oceanic and Atmos­pheric Admin­is­tra­tion. “Because provinces are not well-​​mixed, the dif­fer­ences can con­tinue to grow.”

What’s more, the find­ings shed light on how ocean microbes may respond to global cli­mate change. “You may not see microbes adapt to cli­mate change as rapidly if ocean microbes were com­pletely mixed and they were every­where,” Hell­weger posited. “Cer­tain species of microbes may not thrive under new tem­per­a­tures in cer­tain provinces.”

Up next: Hell­weger, Fredrick, and van Sebille will use a sim­ilar mod­eling approach to explore deep ocean microbes in addi­tion to envi­ron­mental selection.

Jason Kornwitz | Eurek Alert!

Further reports about: DNA Oceanic Over Wales death microbes oceans species

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>