Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on microbes’ evolution

12.09.2014

Two North­eastern Uni­ver­sity researchers and their inter­na­tional col­leagues have cre­ated an advanced model aimed at exploring the role of neu­tral evo­lu­tion in the bio­geo­graphic dis­tri­b­u­tion of ocean microbes.

Their find­ings were pub­lished Thursday in the journal Sci­ence. The paper—titled “Bio­geo­graphic pat­terns in ocean microbes emerge in a neu­tral agent-​​based model”—was co-​​authored by Ferdi Hell­weger, a micro­bial ecology expert and an asso­ciate pro­fessor of civil and envi­ron­mental engi­neering; his doc­toral stu­dent Neil Fredrick, PhD’15; and oceanog­ra­pher Erik van Sebille of Australia’s Uni­ver­sity of New South Wales.


The findings, Hellweger says, shed light on how ocean microbes may respond to global climate change. Photo by Kristie Gillooly.

Over the past sev­eral decades, ecol­o­gists have come to under­stand that both nat­ural selec­tion and neu­tral evolution—that vari­a­tion within and between species is caused by genetic drift and random mutations—play a role in the bio­geo­graphic pat­terns of ocean microbes.

In this study, Hell­weger et al. quan­ti­fied the role of neu­tral processes by sim­u­lating divi­sion, muta­tion, and death of some 100,000 indi­vidual marine bac­teria cells with full genomes in a global sur­face ocean cir­cu­la­tion model. They ran the model for up to 100,000 years and then ana­lyzed the output using advanced DNA align­ment algorithms.

... more about:
»DNA »Oceanic »Over »Wales »death »microbes »oceans »species

Their results flew in the face of the long held notion that microbes are infi­nitely mobile—that the same cells could be found any­where in the world’s oceans, unhin­dered by geo­graphic bound­aries. On the con­trary, the researchers found that microbes evolve faster than the ocean cir­cu­la­tion can dis­perse them, leading to substantial—and dynamic— bio­geo­graphic pat­terns in their sur­face ocean pop­u­la­tion.

Microbes differ between provinces because of neu­tral evo­lu­tion and dis­persal lim­i­ta­tion,” said Hell­weger, whose ongoing research on this topic is sup­ported by grants from the National Sci­ence Foun­da­tion and the National Oceanic and Atmos­pheric Admin­is­tra­tion. “Because provinces are not well-​​mixed, the dif­fer­ences can con­tinue to grow.”

What’s more, the find­ings shed light on how ocean microbes may respond to global cli­mate change. “You may not see microbes adapt to cli­mate change as rapidly if ocean microbes were com­pletely mixed and they were every­where,” Hell­weger posited. “Cer­tain species of microbes may not thrive under new tem­per­a­tures in cer­tain provinces.”

Up next: Hell­weger, Fredrick, and van Sebille will use a sim­ilar mod­eling approach to explore deep ocean microbes in addi­tion to envi­ron­mental selection.

Jason Kornwitz | Eurek Alert!

Further reports about: DNA Oceanic Over Wales death microbes oceans species

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>