Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on microbes’ evolution

12.09.2014

Two North­eastern Uni­ver­sity researchers and their inter­na­tional col­leagues have cre­ated an advanced model aimed at exploring the role of neu­tral evo­lu­tion in the bio­geo­graphic dis­tri­b­u­tion of ocean microbes.

Their find­ings were pub­lished Thursday in the journal Sci­ence. The paper—titled “Bio­geo­graphic pat­terns in ocean microbes emerge in a neu­tral agent-​​based model”—was co-​​authored by Ferdi Hell­weger, a micro­bial ecology expert and an asso­ciate pro­fessor of civil and envi­ron­mental engi­neering; his doc­toral stu­dent Neil Fredrick, PhD’15; and oceanog­ra­pher Erik van Sebille of Australia’s Uni­ver­sity of New South Wales.


The findings, Hellweger says, shed light on how ocean microbes may respond to global climate change. Photo by Kristie Gillooly.

Over the past sev­eral decades, ecol­o­gists have come to under­stand that both nat­ural selec­tion and neu­tral evolution—that vari­a­tion within and between species is caused by genetic drift and random mutations—play a role in the bio­geo­graphic pat­terns of ocean microbes.

In this study, Hell­weger et al. quan­ti­fied the role of neu­tral processes by sim­u­lating divi­sion, muta­tion, and death of some 100,000 indi­vidual marine bac­teria cells with full genomes in a global sur­face ocean cir­cu­la­tion model. They ran the model for up to 100,000 years and then ana­lyzed the output using advanced DNA align­ment algorithms.

... more about:
»DNA »Oceanic »Over »Wales »death »microbes »oceans »species

Their results flew in the face of the long held notion that microbes are infi­nitely mobile—that the same cells could be found any­where in the world’s oceans, unhin­dered by geo­graphic bound­aries. On the con­trary, the researchers found that microbes evolve faster than the ocean cir­cu­la­tion can dis­perse them, leading to substantial—and dynamic— bio­geo­graphic pat­terns in their sur­face ocean pop­u­la­tion.

Microbes differ between provinces because of neu­tral evo­lu­tion and dis­persal lim­i­ta­tion,” said Hell­weger, whose ongoing research on this topic is sup­ported by grants from the National Sci­ence Foun­da­tion and the National Oceanic and Atmos­pheric Admin­is­tra­tion. “Because provinces are not well-​​mixed, the dif­fer­ences can con­tinue to grow.”

What’s more, the find­ings shed light on how ocean microbes may respond to global cli­mate change. “You may not see microbes adapt to cli­mate change as rapidly if ocean microbes were com­pletely mixed and they were every­where,” Hell­weger posited. “Cer­tain species of microbes may not thrive under new tem­per­a­tures in cer­tain provinces.”

Up next: Hell­weger, Fredrick, and van Sebille will use a sim­ilar mod­eling approach to explore deep ocean microbes in addi­tion to envi­ron­mental selection.

Jason Kornwitz | Eurek Alert!

Further reports about: DNA Oceanic Over Wales death microbes oceans species

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>