Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New jigsaw piece for the repair of DNA crosslinks

27.05.2014

DNA damage repair is highly complex.

UZH researchers have now discovered another piece in the puzzle for the removal of extremely dangerous DNA lesions. Faithful and efficient repair of so-called crosslinks requires a collaboration between a specific signalling and repair protein. As crosslink-inducing agents are used in chemotherapy, the new insights are also important for the development of better anti-cancer treatment strategies.


Crosslink-inducing agents used in chemotherapy.

pictures:UZH

Environmental influences such as ionizing radiation, intense heat or various chemical substances damage the DNA constantly. Only thanks to efficient repair systems can mutations – changes in the DNA – largely be prevented. DNA crosslinks that covalently link both strands of the DNA double helix are among the most dangerous DNA lesions. Crosslinks block DNA replication and can thus cause cell death.

Moreover, their faulty repair can trigger the development of tumors. Crosslink repair is highly complex and only vaguely understood today. A team of cancer researchers headed by Alessandro Sartori from the University of Zurich now reveals interesting details as to how cells recognize crosslink damage. In their study recently published in Cell Reports, the scientists demonstrate that the interplay between two specific proteins is crucial for the flawless repair of crosslink damage.

Repair protein recognizes crosslink damage with the aid of a signal protein

For their study, the researchers examined the Fanconi anemia signal pathway, which coordinates the complex repair of crosslinks, with the aid of genetically modified and unchanged cells. Sartori and his team wanted to find out whether and how the signal pathway and the repair protein CtIP interact with one another. “We are able to show that CtIP recognizes and repairs crosslinks efficiently with the aid of the Fanconi anemia signal pathway, or FANCD2 to be more precise,” explains Sartori.

The scientists also discovered the point where CtIP attaches itself to the FANCD2 protein. According to the researchers, the interplay between the two proteins is necessary for the flawless and smooth repair of crosslink damage as it prevents the relocation of entire chromosome sections to another position (see figure). Referred to as chromosomal translocation, the process is one of the main causes of the development of cancer.

These days, substances that specifically trigger crosslink damage are used in cancer chemotherapy. The new findings are therefore important for both our understanding of the development of cancer and the further development of improved drugs.

Literature:
Olga Murina, Christine von Aesch, Ufuk Karakus, Lorenza P. Ferretti, Hella A. Bolck, Kay Hänggi, and Alessandro A. Sartori. FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. Cell Reports (2014). May 1, 2014. http://dx.doi.org/10.1016/j.celrep.2014.03.069

Fanconi anemia
Fanconi anemia (FA) is a rare congenital disorder that was first described in 1927 by Guido Fanconi (1892­–1979), Professor of Pediatrics at the University of Zurich. Fanconi anemia is triggered by mutations in genes that regulate the repair of DNA crosslinks. Patients who suffer from Fanconi anemia display bone marrow failure already during childhood and have a risk of developing cancer that is about 1,000 times higher compared to healthy individuals. Only around a third of Fanconi anemia patients live beyond the age of 30.

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Further reports about: DNA FANCD2 anemia chemotherapy damage dangerous discovered mutations pathway proteins repair strategies substances

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>