Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insight into anti-aging mechanisms from the roundworm


Mitochondrial autophagy has been identified as mediator of lifespan extension upon mitochondrial stress in the roundworm Caenorhabditis elegans by the research team of Natascia Ventura, MD, PhD, and leader of the liaison group between the IUF - Leibniz Research Institute for Environmental Medicine and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, Duesseldorf, Germany.

The roundworm C. elegans is widely used in aging research for several reasons: It is a multicellular organism with a short life cycle and mean lifespan of 15-20 days. Its genome is completely sequenced and more than 60 percent of its genes have the same structure and function of human genes.

Microscopy picture of C. elegans

N. Ventura / IUF

The worm has a small size of about 1 mm, it is transparent, and it has very well characterized phenotypes (appearance) and behaviors. Remarkably, several age-associated features are conserved between C. elegans and humans: progressive degeneration of different tissues, decline in physiological functions and resistance to stress, and increased probability of death with age.

These evolutionarily conserved animal features can be analyzed under the microscope to study the effects of genetic or environmental interventions on the aging process, with important implication for human health.

Mitochondria are widely known as powerhouse organelles of the cell. They fulfill several crucial functions thus being of fundamental importance for proper homeostasis of cells and tissues. In the past decade partial depletion of several mitochondrial regulatory proteins from yeast to mammals has been associated with an anti-aging effect.

This is surprising, as these proteins are vital and severe depletion can lead to diseases in human. One of these proteins is frataxin. In humans, an inherited severe deficiency of frataxin leads to a rare life-threatening neurodegenerative disorder, the so-called “Friedreich’s ataxia”. Complete deficiency of the analogous protein in C. elegans leads to developmental arrest whereas partial depletion actually prolongs animal lifespan. The underlying mechanisms of this anti-aging effect are largely unknown.

New insights have now been published in the world-wide recognized journal “Current Biology” by the team of Natascia Ventura, MD, PhD and leader of the liaison group between the IUF - Leibniz Research Institute for Environmental Medicine and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, Duesseldorf, Germany, in close collaborations with other experts in the field.

They could show for the first time that mitophagy, the specific degradation of dysfunctional mitochondria through autophagy (a fundamental cellular recycling process), is causally involved in the lifespan extension upon mitochondrial stress in C. elegans.

“The more we know about molecular mechanisms activated by the cells to cope with mitochondrial dysfunction - a common cause of aging and of several devastating disorders - the better they can be exploited for the development of novel therapeutic strategies in the treatment of human mitochondrial-associated (e.g. Friedreich’s ataxia, Parkinson’s disease) and age-related disorders (e.g. Alzheimer’s disease, cancer, cardiovascular disorders). We can thus ultimately provide hope for extension of healthy aging”, states Natascia Ventura.

The authors specifically show that upon partial frataxin depletion cells react by activating mitophagy via a mechanism resembling that of iron deprivation. Reducing iron levels may therefore represent a new strategy to possibly deal with mitochondrial dysfunction and ultimately promote healthy aging.

Alfonso Schiavi, Silvia Maglioni, Konstantinos Palikaras, Anjumara Shaik, Flavie Strapazzon, Vanessa Brinkmann, Alessandro Torgovnick, Natascha Castelein, Sasha De Henau, Bart P. Braeckman, Francesco Cecconi, Nektarios Tavernarakis and Natascia Ventura: Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C. elegans. Current Biology, published online July 02, 2015.

About the IUF
The IUF – Leibniz Research Institute for Environmental Medicine investigates the molecular mechanisms through which particles, radiation and environmental chemicals harm human health. The main working areas are environmentally induced aging of the cardiovascular system and the skin as well as disturbances of the nervous and immune system. Through development of novel model systems the IUF contributes to the improvement of risk assessment and the development of novel strategies for the prevention / therapy of environmentally induced health damage.

The research focus of Dr Ventura’s team on mitochondrial adaptive responses to environmental factors in aging and diseases, with a specific focus on prevention, nicely integrates and strongly supports the IUF research mission.

More information:

The IUF is part of the Leibniz Association:

Natascia Ventura, MD, PhD
Lab: +49 (0)211 3389 237
Office: +49 (0)211 3389 203
Email: Natascia.Ventura(at)

Weitere Informationen:

Christiane Klasen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>