Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into anti-aging mechanisms from the roundworm

16.07.2015

Mitochondrial autophagy has been identified as mediator of lifespan extension upon mitochondrial stress in the roundworm Caenorhabditis elegans by the research team of Natascia Ventura, MD, PhD, and leader of the liaison group between the IUF - Leibniz Research Institute for Environmental Medicine and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, Duesseldorf, Germany.

The roundworm C. elegans is widely used in aging research for several reasons: It is a multicellular organism with a short life cycle and mean lifespan of 15-20 days. Its genome is completely sequenced and more than 60 percent of its genes have the same structure and function of human genes.


Microscopy picture of C. elegans

N. Ventura / IUF

The worm has a small size of about 1 mm, it is transparent, and it has very well characterized phenotypes (appearance) and behaviors. Remarkably, several age-associated features are conserved between C. elegans and humans: progressive degeneration of different tissues, decline in physiological functions and resistance to stress, and increased probability of death with age.

These evolutionarily conserved animal features can be analyzed under the microscope to study the effects of genetic or environmental interventions on the aging process, with important implication for human health.

Mitochondria are widely known as powerhouse organelles of the cell. They fulfill several crucial functions thus being of fundamental importance for proper homeostasis of cells and tissues. In the past decade partial depletion of several mitochondrial regulatory proteins from yeast to mammals has been associated with an anti-aging effect.

This is surprising, as these proteins are vital and severe depletion can lead to diseases in human. One of these proteins is frataxin. In humans, an inherited severe deficiency of frataxin leads to a rare life-threatening neurodegenerative disorder, the so-called “Friedreich’s ataxia”. Complete deficiency of the analogous protein in C. elegans leads to developmental arrest whereas partial depletion actually prolongs animal lifespan. The underlying mechanisms of this anti-aging effect are largely unknown.

New insights have now been published in the world-wide recognized journal “Current Biology” by the team of Natascia Ventura, MD, PhD and leader of the liaison group between the IUF - Leibniz Research Institute for Environmental Medicine and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, Duesseldorf, Germany, in close collaborations with other experts in the field.

They could show for the first time that mitophagy, the specific degradation of dysfunctional mitochondria through autophagy (a fundamental cellular recycling process), is causally involved in the lifespan extension upon mitochondrial stress in C. elegans.

“The more we know about molecular mechanisms activated by the cells to cope with mitochondrial dysfunction - a common cause of aging and of several devastating disorders - the better they can be exploited for the development of novel therapeutic strategies in the treatment of human mitochondrial-associated (e.g. Friedreich’s ataxia, Parkinson’s disease) and age-related disorders (e.g. Alzheimer’s disease, cancer, cardiovascular disorders). We can thus ultimately provide hope for extension of healthy aging”, states Natascia Ventura.

The authors specifically show that upon partial frataxin depletion cells react by activating mitophagy via a mechanism resembling that of iron deprivation. Reducing iron levels may therefore represent a new strategy to possibly deal with mitochondrial dysfunction and ultimately promote healthy aging.


Source
Alfonso Schiavi, Silvia Maglioni, Konstantinos Palikaras, Anjumara Shaik, Flavie Strapazzon, Vanessa Brinkmann, Alessandro Torgovnick, Natascha Castelein, Sasha De Henau, Bart P. Braeckman, Francesco Cecconi, Nektarios Tavernarakis and Natascia Ventura: Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C. elegans. Current Biology, published online July 02, 2015.

About the IUF
The IUF – Leibniz Research Institute for Environmental Medicine investigates the molecular mechanisms through which particles, radiation and environmental chemicals harm human health. The main working areas are environmentally induced aging of the cardiovascular system and the skin as well as disturbances of the nervous and immune system. Through development of novel model systems the IUF contributes to the improvement of risk assessment and the development of novel strategies for the prevention / therapy of environmentally induced health damage.

The research focus of Dr Ventura’s team on mitochondrial adaptive responses to environmental factors in aging and diseases, with a specific focus on prevention, nicely integrates and strongly supports the IUF research mission.

More information: http://www.iuf-duesseldorf.de.

The IUF is part of the Leibniz Association: http://www.leibniz-gemeinschaft.de.

Contact
Natascia Ventura, MD, PhD
Lab: +49 (0)211 3389 237
Office: +49 (0)211 3389 203
Email: Natascia.Ventura(at)uni-duesseldorf.de
Website: http://www.iuf-duesseldorf.de/ag-ventura.html

Weitere Informationen:

http://www.cell.com/current-biology/abstract/S0960-9822%2815%2900662-4

Christiane Klasen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>