Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings show strikingly early seeding of HIV viral reservoir

21.07.2014

Discovery presents new challenges for HIV eradication efforts

The most critical barrier for curing HIV-1 infection is the presence of the viral reservoir, the cells in which the HIV virus can lie dormant for many years and avoid elimination by antiretroviral drugs. Very little has been known about when and where the viral reservoir is established during acute HIV-1 infection, or the extent to which it is susceptible to early antiretroviral therapy (ART).

Now a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) in collaboration with the U.S. Military HIV Research Program has demonstrated that the viral reservoir is established strikingly early after intrarectal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before detectable viremia.

The findings appear online in the journal Nature.

... more about:
»ART »BIDMC »Deaconess »HIV »HIV-1 »Harvard »Health »MIT »Medical »blood »investigators »monkeys

"Our data show that in this animal model, the viral reservoir was seeded substantially earlier after infection than was previously recognized," explains senior author Dan H. Barouch, MD, PhD, Director of the Center for Virology and Vaccine Research at BIDMC and steering committee member of the Ragon Institute of MGH, MIT and Harvard. "We found that the reservoir was established in tissues during the first few days of infection, before the virus was even detected in the blood."

This discovery coincides with the recently reported news of the HIV resurgence in the "Mississippi baby," who was believed to have been cured by early administration of ART. "The unfortunate news of the virus rebounding in this child further emphasizes the need to understand the early and refractory viral reservoir that is established very quickly following HIV infection in humans," adds Barouch, a Professor of Medicine at Harvard Medical School.

In this new study, the scientific team initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIV infection. Animals treated on day 3 following infection showed no evidence of virus in the blood and did not generate any SIV-specific immune responses. Nevertheless, after six months of suppressive ART, all of the animals in the study exhibited viral resurgence when treatment was stopped.

While early initiation of ART did result in a delay in the time to viral rebound (the time it takes for virus replication to be observed in the blood following cessation of ART) as compared with later treatment, the inability to eradicate the viral reservoir with very early initiation of ART suggests that additional strategies will be needed to cure HIV infection.

"The strikingly early seeding of the viral reservoir within the first few days of infection is sobering and presents new challenges to HIV-1 eradication efforts," the authors write. "Taken together, our data suggest that extremely early initiation of ART, extended ART duration, and probably additional interventions that activate the viral reservoir will be required for HIV-1 eradication."

###

Study coauthors include first author James Whitney of BIDMC and the Ragon Institute of MGH, MIT and Harvard; BIDMC investigators Srisowmya Sanisetty, Pablo Penaloz-MacMaster, Jinyan Liu, Mayuri Shetty, Lily Parenteau, Crystal Cabral, Jennifers Shields, Stephen Blackmore, Jeffrey Y. Smith, Amanda L. Brinkman, Lauren E. Peter, Sheeba I. Mathew, Kaitlin M. Smith, Erica N. Borducchi; Aliso L. Hill and Daniel I. S. Rosenbloom of Harvard University; Mark G. Lewis of Bioqual, Rockville, MD; Jillian Hattersley, Bei Li, Joseph Hesselgesser, Romas Geleziunas of Gileas Sciences, Foster City, CA; and Merlin L. Robb, Jerome H. Kim and Nelson L. Michael of the Walter Reed Army Institute of Research.

This study was supported, in part, by the US Military Research and Material Command and the US Military HIV Research Program through its cooperative agreement with the Henry M. Jackson Foundation (W81XWH-07-2-0067; W81XWH-11-2-0174); the National Institutes of Health (AI060354; AI078526; AI084794; AI095985; AI096040; AI100645) and the Ragon Institute of MGH, MIT and Harvard.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Bonnie Prescott | Eurek Alert!

Further reports about: ART BIDMC Deaconess HIV HIV-1 Harvard Health MIT Medical blood investigators monkeys

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>