Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery finds missing hormone in birds

25.03.2014

How does the Arctic tern (a sea bird) fly more than 80,000 miles in its roundtrip North Pole-to-South Pole migration? How does the Emperor penguin incubate eggs for months during the Antarctic winter without eating? How does the Rufous hummingbird, which weighs less than a nickel, migrate from British Columbia to Mexico?

These physiological gymnastics would usually be influenced by leptin, the hormone that regulates body fat storage, metabolism and appetite. However, leptin has gone missing in birds - until now.


University of Akron researchers discovered leptin in the mallard duck, peregrine falcon and zebra finch, marking the first time the hormone has been found in birds.

University of Akron researchers have discovered leptin in birds, In their “Discovery of the Elusive Leptin in Birds: Identification of Several ‘Missing Links’ in the Evolution of Leptin and its Receptor,” published March 24, 2014, in the journal PLOS ONE, UA researchers reveal their findings of leptin in the peregrine falcon, mallard duck and zebra finch.

UA Professor of Biology R. Joel Duff made the initial discovery by comparing ancient fish and reptile leptins to predict the bird sequence. Duff, along with undergraduate students Cameron Schmidt and Donald Gasper, identified the sequence in multiple bird genomes and found that the genomic region where leptin was found is similar to that of other vertebrates. Jeremy Prokop, a former UA Integrated Bioscience doctoral student who initiated the project, then constructed computer models of the bird leptin’s three-dimensional structure and performed bench experiments to show that the bird leptin can bind to a bird leptin receptor.

... more about:
»Biology »chicken »hormone »receptor »sequence »structure

Richard Londraville, research team member and UA professor of biology, says that the search for leptin in birds has been a bit of a race among scientists.

Crucial discovery

“It has been a pretty big deal because people wanted to study leptin in birds for the poultry industry, for instance, to develop faster growing and tastier chicken,” Londraville says, noting that, interestingly, leptin has yet to be discovered in chickens, perhaps because their gene structure varies from that of other birds.

Robert Dores, editor-in-chief of the journal General and Comparative Endocrinology, says the discovery represents a significant turning point in leptin study.

“This study now sets the stage for future studies on the evolution of leptin function ... and reinforces that studies on hormone sequences should be complemented by hormone receptor modeling studies,” says Dores, a University of Denver professor of biological sciences. “The world of comparative endocrinology has entered the 21st century.”

 Other UA research team members, including Professor of Biology Amy Milsted, former Integrated Bioscience doctoral student Hope Ball, and Associate Professor of Biology Matthew Shawkey, joined scientists from the Medical College of Wisconsin, the University of Delaware, Ibaraki University and the Cincinnati Museum Center to conduct the study.

Media contact: Denise Henry, 330-972-6477 or henryd@uakron.edu

Denise Henry | EurekAlert!

Further reports about: Biology chicken hormone receptor sequence structure

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>