Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron scattering explains how myoglobin can perform without water

02.08.2012
Understanding will help protein's potential application in biochemical gas sensors or in state-of-the-art wound dressing

Proteins do not need to be surrounded by water to carry out their vital biological functions, according to scientists from the Institut de Biologie Structurale (IBS) in Grenoble, the University of Bristol, the Australian National University, the Institut Laue Langevin and the Jülich Centre for Neutron Science.

In a new paper, published in the Journal of the American Chemical Society, the team used a state-of-the-art neutron scattering technique to demonstrate that when myoglobin, an oxygen-binding protein found in the muscle tissue of vertebrates, is enclosed in a sheath of surfactant molecules, it moves in the same way as when it is surrounded by water. These motions are essential if a protein is to perform its biological function, and their findings make proteins a viable material for use in new wound dressings or even as chemical gas sensors.

Water is the natural environment for soluble proteins and an integral part of their structures which allows them to carry out their specific function. It had been perceived for many years that proteins required water or another solvent in order to function. But in 2010, the Bristol team proved that by grafting polymer chains onto the protein surface, it was possible to produce solvent- and water-free myoglobin liquids that could still perform their biological roles. Scientists have now demonstrated that protein dynamics is the reason why.

Myoglobin is common to almost all mammals and responsible for the red colour of raw meat. Like all soluble proteins, its surface is covered with water molecules. In this study researchers wanted to assess whether the protein structure could still move and continue to bind oxygen if all the water was completely removed and replaced by synthetic molecules.

The team analysed three samples, a wet sample (the protein in water), a dry sample (the dehydrated protein) and a dry protein-polymer hybrid sample where the water molecules had been replaced by synthetically crafted polyethylene glycol-based polymer surfactant molecules. Using a technique called incoherent neutron scattering at the Institut Laue Langevin (ILL) in Grenoble, France, and at the Jülich Centre for Neutron Science at FRMII, Garching, Germany, the team was able to monitor the motions in the protein and in the polymer surfactant separately. This separation has been made possible by specific labelling, carried out in a dedicated deuteration laboratory at the ILL, by which either polymer or protein motions are masked by replacing hydrogen with its heavier isotope, deuterium.

What they found was that the myoglobin molecules surrounded by polymer moved just as well as the wet sample, and that the dry sample had very little mobility. Knowing that proteins can function outside of water opens them up to use in real life applications because it shows that there are other alternatives if water is unavailable. Examples of where they could be used include biochemical gas sensors, as myoglobin can bind carbon monoxide molecules.

Another potential application is in the development of new wound dressings, where the liquid protein could be applied either internally and externally to the wound to reduce healing time by supplying oxygen or other essential chemicals to the damaged tissue.

Adam Perriman of the University of Bristol's School of Chemistry said: "These discoveries have increased our fundamental understanding of proteins and how they behave, which could create many new opportunities for their application in industrial processing and in medical technologies. The fact that our proteins can happily perform their function outside of water, a substance generally thought to be vital for life, really drives home just how robust these biological nanomachines are."

Martin Weik of the Institut de Biologie Structurale explained: "Neutron scattering techniques are excellent for studying the dynamics of proteins and of their environment. The world-class neutron scattering facilities at the ILL and the FRM II allow us to analyse how proteins move, thus complementing the single snapshots of their structures provided by crystallography."

Earlier this month, Martin Weik and colleagues from the IBS, the ILL, the University of California, the Australian Institute of Science and Technology Organisation and the Jülich Centre for Neutron Science at FRMII, applied these techniques to an intrinsically disordered protein (IDP) called tau, to try and understand how its flexibility and its interactions with water differ from ordered proteins such as myoglobin.

They found that the coupling of the disordered tau protein with water motions was much tighter than for folded proteins. IDPs are of significant interest in a medical context because they can aggregate and cluster together to create the amyloid fibrils behind neuro-degenerative diseases such as Parkinson's and Alzheimer's. Whilst the ordered structure of folded proteins makes it possible to develop drugs that fit into the protein like a key in a lock, the conformational variability of an intrinsically disordered protein like tau makes it more difficult. A more in-depth understanding of their dynamics is required and the discovery of tight coupling with water motions is a significant step forward.

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>