Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron scattering explains how myoglobin can perform without water

02.08.2012
Understanding will help protein's potential application in biochemical gas sensors or in state-of-the-art wound dressing

Proteins do not need to be surrounded by water to carry out their vital biological functions, according to scientists from the Institut de Biologie Structurale (IBS) in Grenoble, the University of Bristol, the Australian National University, the Institut Laue Langevin and the Jülich Centre for Neutron Science.

In a new paper, published in the Journal of the American Chemical Society, the team used a state-of-the-art neutron scattering technique to demonstrate that when myoglobin, an oxygen-binding protein found in the muscle tissue of vertebrates, is enclosed in a sheath of surfactant molecules, it moves in the same way as when it is surrounded by water. These motions are essential if a protein is to perform its biological function, and their findings make proteins a viable material for use in new wound dressings or even as chemical gas sensors.

Water is the natural environment for soluble proteins and an integral part of their structures which allows them to carry out their specific function. It had been perceived for many years that proteins required water or another solvent in order to function. But in 2010, the Bristol team proved that by grafting polymer chains onto the protein surface, it was possible to produce solvent- and water-free myoglobin liquids that could still perform their biological roles. Scientists have now demonstrated that protein dynamics is the reason why.

Myoglobin is common to almost all mammals and responsible for the red colour of raw meat. Like all soluble proteins, its surface is covered with water molecules. In this study researchers wanted to assess whether the protein structure could still move and continue to bind oxygen if all the water was completely removed and replaced by synthetic molecules.

The team analysed three samples, a wet sample (the protein in water), a dry sample (the dehydrated protein) and a dry protein-polymer hybrid sample where the water molecules had been replaced by synthetically crafted polyethylene glycol-based polymer surfactant molecules. Using a technique called incoherent neutron scattering at the Institut Laue Langevin (ILL) in Grenoble, France, and at the Jülich Centre for Neutron Science at FRMII, Garching, Germany, the team was able to monitor the motions in the protein and in the polymer surfactant separately. This separation has been made possible by specific labelling, carried out in a dedicated deuteration laboratory at the ILL, by which either polymer or protein motions are masked by replacing hydrogen with its heavier isotope, deuterium.

What they found was that the myoglobin molecules surrounded by polymer moved just as well as the wet sample, and that the dry sample had very little mobility. Knowing that proteins can function outside of water opens them up to use in real life applications because it shows that there are other alternatives if water is unavailable. Examples of where they could be used include biochemical gas sensors, as myoglobin can bind carbon monoxide molecules.

Another potential application is in the development of new wound dressings, where the liquid protein could be applied either internally and externally to the wound to reduce healing time by supplying oxygen or other essential chemicals to the damaged tissue.

Adam Perriman of the University of Bristol's School of Chemistry said: "These discoveries have increased our fundamental understanding of proteins and how they behave, which could create many new opportunities for their application in industrial processing and in medical technologies. The fact that our proteins can happily perform their function outside of water, a substance generally thought to be vital for life, really drives home just how robust these biological nanomachines are."

Martin Weik of the Institut de Biologie Structurale explained: "Neutron scattering techniques are excellent for studying the dynamics of proteins and of their environment. The world-class neutron scattering facilities at the ILL and the FRM II allow us to analyse how proteins move, thus complementing the single snapshots of their structures provided by crystallography."

Earlier this month, Martin Weik and colleagues from the IBS, the ILL, the University of California, the Australian Institute of Science and Technology Organisation and the Jülich Centre for Neutron Science at FRMII, applied these techniques to an intrinsically disordered protein (IDP) called tau, to try and understand how its flexibility and its interactions with water differ from ordered proteins such as myoglobin.

They found that the coupling of the disordered tau protein with water motions was much tighter than for folded proteins. IDPs are of significant interest in a medical context because they can aggregate and cluster together to create the amyloid fibrils behind neuro-degenerative diseases such as Parkinson's and Alzheimer's. Whilst the ordered structure of folded proteins makes it possible to develop drugs that fit into the protein like a key in a lock, the conformational variability of an intrinsically disordered protein like tau makes it more difficult. A more in-depth understanding of their dynamics is required and the discovery of tight coupling with water motions is a significant step forward.

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>