Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons work like a chain of dominos to control action sequences

25.10.2010
MIT neuroscientists identify chain reactions within the brain

As anyone who as ever picked up a guitar or a tennis racket knows, precise timing is often an essential part of performing complex tasks. Now, by studying the brain circuits that control bird song, MIT researchers have identified a "chain reaction" of brain activity that appears to control the timing of song.

The song of the zebra finch is very stereotypic; each song lasts about 1 second, and consists of multiple syllables whose timing is almost precisely the same from one performance to the next. "It's a great model system for studying how the brain controls actions", says Michale Fee, senior author of the study and a member of the McGovern Institute for Brain Research.

The brain structures involved in bird song production have been identified, and Fee and colleagues had previously shown that the tempo of the song is controlled by a brain area known as HVC. During the 1-second song, individual neurons in HVC fire just one short burst of activity at a precise time point within the song. Different neurons fire at different times, so the activity of these neurons represents a 'time stamp' that causes the correct instructions to be sent to the vocal organs at each instant within the song.

But how does each HVC neuron know when to fire with such perfect timing? Several different ideas have been proposed, but one especially appealing idea is the "synfire chain" model, in which neurons fire in a chain reaction – each one triggering the next in the sequence, like a cascade of falling dominos.

In a new study, which appears in the October 24 online issue of Nature, Fee and colleagues have now tested this idea using intracellular recordings, an approach that can record tiny voltage fluctuations in individual HVC neurons. In a technical tour-de-force, they developed a method in which these recordings could be made while the bird was freely moving around his cage and engage in natural behaviors such as singing.

Their results support the chain of dominoes model. When individual HVC neurons fire, they do so suddenly, as if hit by the preceding domino. There was no prior build-up of activity; instead, each neuron remained silent until its turn came to fire, at which point it showed a sudden burst of activity, presumably caused by excitatory input from the previous neuron in the chain. In further experiments, the authors showed that this burst of activity is triggered suddenly by an all-or-none influx of calcium through specialized membrane channels that open in response to this excitatory input.

The MIT researchers also showed that the timing of neural bursts in HVC neurons is not easily disturbed by small electrical perturbations. That's important, explains first author Michael Long, who is now at New York University's Langone Medical Center. "If one neuron made a mistake in its timing, every subsequent neuron down the chain would also be off. It would be like a musician with no sense of rhythm."

"This is the first time we've been able to understand the generation of a learned behavioral sequence", says Fee. "We predict that similar mechanisms probably exist in other brains, including our own."

Dezhe Jin of Pennsylvania State University also contributed to the study.

Source: "Support for a synaptic chain model of neuronal sequence generation," Long MA, Jin DZ, Fee MS. Nature. 24 Oct 2010.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: HVC Nature Immunology brain structure chain reaction neurons

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>