Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuro-degeneration as a result of disbalanced biochemical equilibrium

06.06.2014

Recent insights of Prof. Anna von Mikecz, scientist at the IUF-Leibniz Research Institute for Environmental Medicine, shed new light on the development of protein aggregating diseases, e.g. Alzheimer’s, Parkinson’s and Huntington’s disease.

Anna von Mikecz, leader of the IUF group Influence of xenobiotics on the cell nucleus, focuses her research on the functional role of clumped, i.e. aggregated, proteins, also called amyloid, in the cell nucleus. As reported in her new scientific paper*, amyloid occurs also in healthy human cells and nuclei, and plays probably an important functional role.

Amyloids are formed by fibrillation of proteins. The main focus in the field of pharmacology lays on the pathological aspects of amyloids and countermeasures against neurodegenerative diseases today aim at the prevention of amyloid formation.

Prof. von Mikecz comments the assumption that amyloid formation is in general adverse, as follows: “This hypothesis is currently discussed controversially among scientists and it is becoming increasingly clear that we do not yet understand the molecular mechanisms of amyloid formation in the cell well enough.”A better understanding of the physiological and functional role of amyloids in the nucleus is a prerequisite for promising therapeutic interventions in neurodegenerative protein deposition diseases.”

The scientist’s results indicate that there is a tipping point for the adverse effect of amyloid in the nucleus, i.e. if a critical amount of amyloid in the nucleus is exceeded, harmful neuro-degenerative effects result.

Her research also shows that the amyloid equilibrium is disbalanced by exposure to xenobiotics such as certain nano-particles and heavy metals. The exposure leads to an increase in the amount of amyloid in the nucleus above the critical amount. This can be observed in vivo in animal studies as well as in vitro in cell cultures.

It is to be expected, that this new concept will facilitate the development of original diagnostic approaches, bring us significantly closer to effective countermeasures and also contribute to understanding the relationship between exposure to xenobiotics and the development of neuro-degenerative diseases.

*Anna von Mikecz (2014). Pathology and function of nuclear amyloid: protein homeostasis matters. Nucleus (open access, June 4th 2014)

Contact:
Dr. Mardas Daneshian
IUF
Phone: +49-(0)211-3389216
mardas.daneshian@iuf-duesseldorf.de

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/24896092
http://www.iuf-duesseldorf.com/von-mikecz-lab.html

Dr. Mardas Daneshian | idw - Informationsdienst Wissenschaft

Further reports about: IUF Pathology adverse biochemical diseases equilibrium exposure fibrillation neurodegenerative proteins

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>