Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuro-degeneration as a result of disbalanced biochemical equilibrium

06.06.2014

Recent insights of Prof. Anna von Mikecz, scientist at the IUF-Leibniz Research Institute for Environmental Medicine, shed new light on the development of protein aggregating diseases, e.g. Alzheimer’s, Parkinson’s and Huntington’s disease.

Anna von Mikecz, leader of the IUF group Influence of xenobiotics on the cell nucleus, focuses her research on the functional role of clumped, i.e. aggregated, proteins, also called amyloid, in the cell nucleus. As reported in her new scientific paper*, amyloid occurs also in healthy human cells and nuclei, and plays probably an important functional role.

Amyloids are formed by fibrillation of proteins. The main focus in the field of pharmacology lays on the pathological aspects of amyloids and countermeasures against neurodegenerative diseases today aim at the prevention of amyloid formation.

Prof. von Mikecz comments the assumption that amyloid formation is in general adverse, as follows: “This hypothesis is currently discussed controversially among scientists and it is becoming increasingly clear that we do not yet understand the molecular mechanisms of amyloid formation in the cell well enough.”A better understanding of the physiological and functional role of amyloids in the nucleus is a prerequisite for promising therapeutic interventions in neurodegenerative protein deposition diseases.”

The scientist’s results indicate that there is a tipping point for the adverse effect of amyloid in the nucleus, i.e. if a critical amount of amyloid in the nucleus is exceeded, harmful neuro-degenerative effects result.

Her research also shows that the amyloid equilibrium is disbalanced by exposure to xenobiotics such as certain nano-particles and heavy metals. The exposure leads to an increase in the amount of amyloid in the nucleus above the critical amount. This can be observed in vivo in animal studies as well as in vitro in cell cultures.

It is to be expected, that this new concept will facilitate the development of original diagnostic approaches, bring us significantly closer to effective countermeasures and also contribute to understanding the relationship between exposure to xenobiotics and the development of neuro-degenerative diseases.

*Anna von Mikecz (2014). Pathology and function of nuclear amyloid: protein homeostasis matters. Nucleus (open access, June 4th 2014)

Contact:
Dr. Mardas Daneshian
IUF
Phone: +49-(0)211-3389216
mardas.daneshian@iuf-duesseldorf.de

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/24896092
http://www.iuf-duesseldorf.com/von-mikecz-lab.html

Dr. Mardas Daneshian | idw - Informationsdienst Wissenschaft

Further reports about: IUF Pathology adverse biochemical diseases equilibrium exposure fibrillation neurodegenerative proteins

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>