Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuro-degeneration as a result of disbalanced biochemical equilibrium

06.06.2014

Recent insights of Prof. Anna von Mikecz, scientist at the IUF-Leibniz Research Institute for Environmental Medicine, shed new light on the development of protein aggregating diseases, e.g. Alzheimer’s, Parkinson’s and Huntington’s disease.

Anna von Mikecz, leader of the IUF group Influence of xenobiotics on the cell nucleus, focuses her research on the functional role of clumped, i.e. aggregated, proteins, also called amyloid, in the cell nucleus. As reported in her new scientific paper*, amyloid occurs also in healthy human cells and nuclei, and plays probably an important functional role.

Amyloids are formed by fibrillation of proteins. The main focus in the field of pharmacology lays on the pathological aspects of amyloids and countermeasures against neurodegenerative diseases today aim at the prevention of amyloid formation.

Prof. von Mikecz comments the assumption that amyloid formation is in general adverse, as follows: “This hypothesis is currently discussed controversially among scientists and it is becoming increasingly clear that we do not yet understand the molecular mechanisms of amyloid formation in the cell well enough.”A better understanding of the physiological and functional role of amyloids in the nucleus is a prerequisite for promising therapeutic interventions in neurodegenerative protein deposition diseases.”

The scientist’s results indicate that there is a tipping point for the adverse effect of amyloid in the nucleus, i.e. if a critical amount of amyloid in the nucleus is exceeded, harmful neuro-degenerative effects result.

Her research also shows that the amyloid equilibrium is disbalanced by exposure to xenobiotics such as certain nano-particles and heavy metals. The exposure leads to an increase in the amount of amyloid in the nucleus above the critical amount. This can be observed in vivo in animal studies as well as in vitro in cell cultures.

It is to be expected, that this new concept will facilitate the development of original diagnostic approaches, bring us significantly closer to effective countermeasures and also contribute to understanding the relationship between exposure to xenobiotics and the development of neuro-degenerative diseases.

*Anna von Mikecz (2014). Pathology and function of nuclear amyloid: protein homeostasis matters. Nucleus (open access, June 4th 2014)

Contact:
Dr. Mardas Daneshian
IUF
Phone: +49-(0)211-3389216
mardas.daneshian@iuf-duesseldorf.de

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/24896092
http://www.iuf-duesseldorf.com/von-mikecz-lab.html

Dr. Mardas Daneshian | idw - Informationsdienst Wissenschaft

Further reports about: IUF Pathology adverse biochemical diseases equilibrium exposure fibrillation neurodegenerative proteins

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>