Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Stem Cells Attack Glioblastoma Cells

06.07.2010
In their latest research, scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have demonstrated how the brain’s own stem cells and precursor cells control the growth of glioblastomas. Of all brain tumors, glioblastomas are among the most common and most aggressive.

Dr. Sridhar Reddy Chirasani, Professor Helmut Kettenmann and Dr. Rainer Glass (all MDC) and Dr. Michael Synowitz (Charité – Universitätsmedizin Berlin) have now shown in cell culture and mouse model experiments just how the body’s own protective mechanism they identified in an earlier study, actually works (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastomas are brain tumors that are most common in adults in their mid-fifties or early sixties. The causes for developing the disease are not yet known. Researchers assume that misdirected neural stem cells / precursor cells mutate into cancer cells and can form glioblastomas.

Several years ago the MDC and Charité researchers were able to show that normal stem cell/ precursor cells of the brain attack the tumor. Apparently, the tumor itself entices these stem cells to migrate over relatively long distances from the stem cell niches of the brain. Why this is so is unclear. Moreover, the researchers still do not know which substance attract the stem cells to the tumor. However, now they have discovered how the stem cells keep the tumor in check.

Stem cell protein induces signaling in glioblastoma cells
The scientists showed that the neural stem cells and neural precursor cells release a protein that belongs to the family of the BMP proteins (bone morphogenetic protein). This protein received its name for its ability to induce bone and cartilage tissue formation, the first characteristic that was known about it. However, BMP is active in the entire organism – even in the brain.

Neural stem cells release BMP-7 in the brain in the vicinity of the glioblastoma cells. The protein influences a small population of cancer cells, the so-called tumor stem cells. The current consensus of researchers is that these tumor stem cells are the actual cause for the continuous tumor self-renewal in the brain. A small quantity of these cells is sufficient to form new tumors again even after surgery. BMP-7 induces signaling in the tumor stem cells, causing them to differentiate. This means that they are no longer tumor stem cells.

However, the activity of stem cells in the brain and thus of the body’s own protective mechanism against glioblastomas diminishes with increasing age. This could explain why the tumors usually develop in older adults and not in children and young people.

Aim – the destruction of tumor stem cells
The discovery of the tumor stem cells has led to new concepts in the therapy of glioblastomas. “Normal cancer cells” can be destroyed using conventional therapies (surgery, radiation, chemotherapy), which are seldom successful in tumor stem cells. The aim is therefore to develop therapy concepts to destroy these tumor stem cells. The findings from the mouse experiments of the researchers in Berlin could point to a new approach: reprogramming tumor stem cells into less harmful cells, which could then be destroyed with a therapy.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>