Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Stem Cells Attack Glioblastoma Cells

06.07.2010
In their latest research, scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have demonstrated how the brain’s own stem cells and precursor cells control the growth of glioblastomas. Of all brain tumors, glioblastomas are among the most common and most aggressive.

Dr. Sridhar Reddy Chirasani, Professor Helmut Kettenmann and Dr. Rainer Glass (all MDC) and Dr. Michael Synowitz (Charité – Universitätsmedizin Berlin) have now shown in cell culture and mouse model experiments just how the body’s own protective mechanism they identified in an earlier study, actually works (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastomas are brain tumors that are most common in adults in their mid-fifties or early sixties. The causes for developing the disease are not yet known. Researchers assume that misdirected neural stem cells / precursor cells mutate into cancer cells and can form glioblastomas.

Several years ago the MDC and Charité researchers were able to show that normal stem cell/ precursor cells of the brain attack the tumor. Apparently, the tumor itself entices these stem cells to migrate over relatively long distances from the stem cell niches of the brain. Why this is so is unclear. Moreover, the researchers still do not know which substance attract the stem cells to the tumor. However, now they have discovered how the stem cells keep the tumor in check.

Stem cell protein induces signaling in glioblastoma cells
The scientists showed that the neural stem cells and neural precursor cells release a protein that belongs to the family of the BMP proteins (bone morphogenetic protein). This protein received its name for its ability to induce bone and cartilage tissue formation, the first characteristic that was known about it. However, BMP is active in the entire organism – even in the brain.

Neural stem cells release BMP-7 in the brain in the vicinity of the glioblastoma cells. The protein influences a small population of cancer cells, the so-called tumor stem cells. The current consensus of researchers is that these tumor stem cells are the actual cause for the continuous tumor self-renewal in the brain. A small quantity of these cells is sufficient to form new tumors again even after surgery. BMP-7 induces signaling in the tumor stem cells, causing them to differentiate. This means that they are no longer tumor stem cells.

However, the activity of stem cells in the brain and thus of the body’s own protective mechanism against glioblastomas diminishes with increasing age. This could explain why the tumors usually develop in older adults and not in children and young people.

Aim – the destruction of tumor stem cells
The discovery of the tumor stem cells has led to new concepts in the therapy of glioblastomas. “Normal cancer cells” can be destroyed using conventional therapies (surgery, radiation, chemotherapy), which are seldom successful in tumor stem cells. The aim is therefore to develop therapy concepts to destroy these tumor stem cells. The findings from the mouse experiments of the researchers in Berlin could point to a new approach: reprogramming tumor stem cells into less harmful cells, which could then be destroyed with a therapy.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>