Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neon blue-tailed tree lizard glides like a feather

21.07.2009
Most lacertid lizards are content scurrying in and out of nooks and crannies in walls and between rocks.

Most lacertid lizards are content scurrying in and out of nooks and crannies in walls and between rocks. However, some have opted for an arboreal life style. Neon blue tailed tree lizards (Holaspis guentheri) leap from branch to branch as they scamper through trees in the African forest.

There are even anecdotes that the tiny African tree lizards can glide. But without any obvious adaptations to help them to upgrade a leap to a glide, it wasn't clear whether the reptiles really do take to the air and, if they do, how they remain aloft.

Intrigued by all aspects of lacertid locomotion, Bieke Vanhooydonck from the University of Antwerp and her colleagues, Anthony Herrel and Peter Aerts, decided to find out whether neon blue tailed tree lizards really glide. Recruiting undergraduate Greet Meulepas to the team, they began filming dainty neon blue tailed tree lizards, gliding geckos (Ptychozoon kuhli) and the common wall lizard (Podarcis muralis) as the animals leapt from a 2m high platform to see if the neon blue tailed tree lizards really could glide. Vanhooydonck and her colleagues publish their discovery that H. guentheri glide like feathers on 17 July 2009 in the Journal of Experimental Biology at http://jeb.biologists.org.

Unfortunately, filming the lizards was extremely difficult. Having startled the small animals into leaping off the platform, the team had little control over the animal's direction, and couldn't guarantee that it was parallel to their camera. It was also difficult to capture each trajectory with a single camera and tricky to get the lighting conditions right. But after weeks of persistence the team finally collected enough film, as the lizards leapt, to compare their performances.

At first, it didn't look as if the African lizard was gliding any better than the common wall lizard. Both animals were able to cover horizontal distances of 0.5m after leaping from the platform, while the gliding gecko covered distances greater than 1 m, aided by its webbed feet and skin flaps. But when the team compared the lizards' sizes, they noticed that there was a big difference between the common wall lizard and the tree lizard. The tiny tree lizard only weighed 1.5 g, almost 1/3 of the larger common wall lizard's weight and 1/10 the gliding gecko's mass, so Aerts calculated how far each lizard would travel horizontally if they fell like a stone. This time it was clear that the tiny tree lizard was travelling 0.2m further than Aerts would have expected if it were simply jumping off the platform. The tree lizard was definitely delaying its descent and landing more slowly than the common wall lizard; the tree lizard was gliding.

But how was the tiny tree lizard able to remain airborne for so long? Maybe the lizard was squashing itself flat while gliding to increase its surface area and generate more lift. But when the team analysed the lizards' trajectories, the tree lizard's shape did not change. And when Aerts calculated the amount of lift each lizard generated as they descended, it was clear that the tree lizard was unable to produce a lift force. The team realised that instead of increasing its surface area to generate lift, the tree lizard is able to glide because it is so light. The tree lizard's 'wing loading' (mass:surface area ratio) was the same as that of the gliding gecko (assisted by skin flaps and webbed feet) so the tree lizard was able to glide like a feather because it was so light.

Curious to find out why the tree lizard is so light, Herrel contacted Renaud Boistel, Paul Tafforeau and Vincent Fernandez at the European Synchrotron Radiation Facility to scan all three lizards' bodies. Visualising the animals' skeletons with X-rays, it was clear that the tree lizard's bones were packed full of air spaces, making the lizard's skeleton feather light for gliding.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>