Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle-in-a-haystack search identifies potential brain disease drug

24.02.2011
Scientists who examined more than 10,000 chemical compounds during the last year in search of potential new drugs for a group of untreatable brain diseases, are reporting that one substance shows unusual promise.

The early positive signs for so-called prion diseases come from research in laboratory mice and cell cultures, they say in a report in ACS' Journal of Medicinal Chemistry.

Adam Renslo and colleagues, who include Nobel Laureate Stanley B. Prusiner, explain that prion diseases include conditions like mad cow disease in animals and Creutzfeldt-Jakob Disease in humans, result from deposits of abnormal prion protein in brain tissue. Prion diseases are invariably fatal and no treatments are yet available.

The scientists describe narrowing their search among the 10,000 candidate drugs to a few dozen of the most promising and then synthesizing new variations of the compounds, termed aminothiazoles. Tests on laboratory mice showed that the new compounds can reach the brain and reach high concentrations when taken orally and do not appear toxic.

Tests on prion-infected mouse brain cells showed that the compounds reduced the amount of the abnormal prion protein. The compounds appear to be among the most promising potential treatments for prion diseases yet discovered, the report suggests.

ARTICLE FOR IMMEDIATE RELEASE "2-Aminothiazoles as Therapeutic Leads for Prion Diseases"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/jm101250y

CONTACT:
Adam R. Renslo, Ph.D.
University of California, San Francisco,
MC2552 Byers Hall 503D,
1700 4th Street, San Francisco,
Calif. 94158
Phone: (415) 514-9698
Fax: (415) 514-4507
E-mail: adam.renslo@ucsf.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>