Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Necessity at the roots of innovation: The scramble for nutrients intensifies as soils age

21.04.2015

Confronted by extreme scarcity of nutrients in an Australian dune ecosystem, the leaves of different plant species converge on a single efficient strategy to conserve phosphorus, an essential nutrient. But it is a different story underground, say researchers, including Ben Turner, staff scientist at the Smithsonian Tropical Research Institute. Plants on older dunes draw from a full bag of tricks, and take advantage of nearly all of the known adaptations for acquiring nutrients to capture the phosphorus they need.

"Plants cope with phosphorus scarcity in a similar way above-ground by making phosphorus-efficient leaves," Turner said. "But below-ground they're using many different strategies to obtain phosphorus, and the diversity of those strategies increases as soil phosphorus declines."


Nutrient poor soils in the Jurien Bay ecosystem support a very diverse plant community.

Credit: ABC/Ben Turner

The properties of soil, "the living skin of the Earth," drive biological processes, but these properties change as soils age. One of the best places in the world to study what happens to plant communities as soils age is the Jurien Bay dune chronosequence in Australia, a series of with new to ancient soils.

New dunes form during interglacial periods of high sea levels, as the ocean throws sand up onto the shore. Meanwhile, inland dunes are gradually covered by kwongan, exceptionally species-rich shrubby vegetation unique to southwestern Australia. Soil phosphorus has gradually leached away during the past 2 million years, leaving some of the most impoverished soils in the world on the oldest dunes.

Turner and colleagues from the University of Western Australia and the University of Montreal identified and counted all of the plants at a series of six dune systems, then identified how each species acquired phosphorus from the soil. As the ecosystem aged, the number of plant species and the number of phosphorus acquisition strategies increased.

Some plant roots join forces with mycorrhizal fungi, which extend out like a net from plant roots to capture nutrients. Other plants form clusters of roots that exude carboxylates to "mine" the soil for phosphorus. Some resort to parasitism and carnivory, extracting phosphorus from other organisms. Even plants growing next to one another used different nutrient capture strategies with equal success.

"There's considerable interest in understanding how plant traits influence the assembly of plant communities," Turner said. "This study highlights the potential importance of nutrient acquisition strategies in this process, particularly for species-rich ecosystems."

Complete results of this study, supported by the Australian Research Council and the Kwongan Foundation, are published in the journal Nature Plants.

###

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a part of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu

Reference: Zemunik, G., B.L. Turner, H. Lambers, and E. Laliberté (2015). Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants.

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>