Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating in the ocean of molecules

11.08.2009
Tracking down new active agents for cancer or malaria treatment could soon become easier - thanks to a computer program with which researchers from the Max Planck Institute of Molecular Physiology in Dortmund aim to facilitate the search for suitable pharmaceutical substances.

The program, which is called Scaffold Hunter, acts as a tool for navigating chemical space. It generates maps of chemically-related structures and links them to biological activity, that is, to their potential to bind to proteins, in particular medically relevant proteins.

With the help of this new tool, the Max Planck scientists, together with colleagues from the universities of Frankfurt, Eindhoven and New Mexico, have identified substances that could provide possible candidates for the development of active agents for use in cancer treatment and malaria. (Nature Chemical Biology, June 28, 2009)

The dimensions of the chemical space, which contains the total number of all conceivable chemical structures, are unimaginable: it is estimated to contain up to 10160 different molecules. Written out in full, this figure would fill two lines of closely-spaced numbers on a typed page. However, only some of these - 1060 molecules according to the estimates - are potential active agents. Identifying these islands of biological activity in the ocean of all potential compounds is not an easy task.

"Organic synthesis cannot gauge the chemical space in its entirety," explains Stefan Wetzel, a researcher from Herbert Waldmann's group at the Max Planck Institute of Molecular Physiology in Dortmund. Chemists cannot cook up all possible compounds to test them. Therefore, the researchers have developed this navigation system to help them steer their way through this sea of possibilities. The program Scaffold Hunter generates a map of the chemical space based on structural criteria and uses it to identify biologically active compounds, e.g. natural substances. The program can also be used to predict new candidate agents that do not occur in nature.

The scientists focus on the medically relevant section of the chemical space, in which molecules contain ring-shaped structures. To do this, they reduce the molecules to their characteristic scaffolds. Scaffold Hunter then orders these structures in a kind of family tree based on their similarities: the program assigns smaller 'parent' scaffolds to each scaffold by gradually removing rings from the original 'child' scaffold. This generates innumerable parent-child relationships - structurally related molecules of varying complexity. The advantage lies in the fact that chemically similar compounds are very likely to display similar biological activity.

"These structurally-based lineages form the branches of the tree," explains Stefan Wetzel: "With the help of Scaffold Hunter we move along the branches from complex to increasingly simple structures which may be similar in their effect." Thus, the researchers identify structurally simple scaffolds with promising characteristics as the starting point in the quest for new active agents: chemists can then vary the scaffolds with different appendages to synthesize the optimal active agent. Scaffold Hunter can also be used to predict bioactive molecules that do not arise in nature but are very likely to display similar activity to related natural molecules, as the program also creates and visualizes virtual scaffolds. The researchers immediately demonstrated how efficiently the program works by discovering new inhibitors of pyruvate kinase. The inhibition of this enzyme is seen as a promising approach to the treatment of cancer and malaria.

An even more detailed search can be carried out if the scientist can enter information about biological activity - if available - at the beginning of the navigation process. In this case, Scaffold Hunter only links the scaffolds that are known to display the same biological activity to the branches. As a result, these branches are very likely to bear fruit: active substances are probably also located in the branches between the substances whose biological activity is already known. "In this way, we tracked down new inhibitors for 2-lipoxygenase and the oestrogen receptor alpha," says Steffen Renner, a former researcher at the Max Planck Institute and now an employee of the Novartis pharmaceutical concern. 5-lipoxygenase is a target protein in the treatment of inflammation and bladder cancer, while the oestrogen receptor alpha is an important starting point in the treatment of breast cancer.

"Scaffold Hunter is a key technological tool with innumerable possible applications," says Stefan Wetzel. "The program was consciously designed in a very user-friendly way so that non-experts can use it to analyse their data themselves," he adds. The researchers have made Scaffold Hunter available free of charge on the Internet. The source code can also be obtained: advanced users can thus adapt the program to their requirements and embark on more targeted explorations of the chemical space.

Original work:

Renner S, van Otterlo WAL, Dominguez Seoane M, Möcklinghoff S, Hofmann B, Wetzel S, Schuffenhauer A, Ertl P, Oprea TI, Steinhilber D, Brunsveld L, Rauh D, Waldmann H

Bioactivity-Guided Mapping and Navigation of Chemical Space

Nature Chemical Biology

DOI: 10.1038/nchembio.187, June 28, 2009

Wetzel S, Klein K, Renner S, Rauh D, Oprea TI, Mutzel P, Waldmann H

Interactive Exploration of Chemical Space with Scaffold Hunter

Nature Chemical Biology

DOI: 10.1038/nchembio.188, June 28, 2009

Stefan Wetzel | EurekAlert!
Further information:
http://www.mpi-dortmund.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>