Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nauseating taste of bitter

12.04.2011
The wisdom of the body helps protect against accidental poisoning

Swallow the good, spit out the bad. A new study from the Monell Center highlights the vital role taste plays as the body's gatekeeper. The research shows that strong bitter taste in and of itself can cause people to both report the sensation of nausea and display a pattern of stomach activity characteristic of actual nausea.

"Nausea is a huge negative modulator of quality of life for many people, including pregnant women, patients undergoing chemotherapy, and virtually all types of GI patients," said senior author Paul A.S. Breslin, Ph.D., a sensory scientist at Monell. "Our findings may help clinicians ease suffering in these patients by advising them to avoid strongly bitter foods."

The findings demonstrate that our bodies anticipate the consequences of food we eat. It was already known that the taste of nutrients such as sugars and fats causes the body to release hormones in preparation for digestion and metabolism. The current study reveals that the body also responds to the taste of possible toxins.

Bitter taste is thought to have evolved to signal the potential presence of toxins, which are abundantly present in plants. Breslin believes that strong bitter taste causes the bad feeling of nausea "to punish us so that we won't eat that toxin again." Thus nausea serves to distinguish the everyday bitterness of foods like coffee, chocolate, and beer from the very strong bitterness of potentially poisonous substances.

In the study, published in Current Biology, 63 subjects sampled an intensely bitter but non-toxic solution known as sucrose octa-acetate (SOA). After holding the solution in their mouths for three minutes, they were asked to rate the degree of perceived nausea. Sixty-five percent were at least mildly to moderately nauseated and 20 percent indicated that they were strongly nauseated. A different bitter solution produced the same results. The findings were specifically related to bitter taste, as sweet, salty or umami taste did not cause nausea.

To illustrate how bitter taste affected gastric motility – the rhythm of stomach muscular activity – the researchers first simulated motion-related nausea. Stomach motor activity was recorded from subjects sitting in a drum with vertical black stripes painted inside while the drum rotated around their heads. All but one were strongly nauseated.

The scientists then measured stomach activity from 23 subjects who were holding SOA in their mouths. Individuals who described feeling nauseous also had a pattern of stomach activity that was very similar to that recorded from those in the drum.

"This is a wonderful example of what is called 'the wisdom of the body,'" said Breslin. "The findings show that taste detects toxins before they enter our bodies. Further, their ingestion is punished by the feeling of nausea and our gastric function is disturbed to minimize their entry into our blood."

Future studies will explore the effectiveness of bitter blockers in reducing nausea in clinical populations.

Also contributing to the study were first author Catherine Peyrot des Gachons and Gary K. Beauchamp, both of Monell; Robert M. Stern from The Pennsylvania State University; and Kenneth L. Koch from Wake Forest University School of Medicine. Dr. Breslin is also faculty at Rutgers University School of Environmental and Biological Sciences. The research was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>