Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All natural ingredients

15.03.2010
A catalog of the chemicals produced within a plant’s tissues yields fresh insights into its metabolic pathways and gene function

The various metabolic pathways in a given plant generate a staggering array of molecules that enable growth and survival under diverse conditions—and in some cases, hold value for scientific applications ranging from pharmaceutical research to the development of new materials. “The huge chemical diversity of plants exceeds that of most animals and microorganisms,” says Kazuki Saito of the RIKEN Plant Science Center in Yokohama.

The thale cress, Arabidopsis thaliana, is a widely used model for genetic and developmental research and possibly the best characterized of all plant species; nevertheless, scientists remain far from completing a comprehensive ‘metabolome’, or atlas of metabolites, for this organism. The AtMetExpress project, launched by Saito and colleagues, seeks to rectify this situation by assembling a massive, annotated roster of molecules gathered from 36 different Arabidopsis tissue samples1.

“What we needed was the pattern of metabolite accumulation during plant development to understand cell function more precisely,” explains Saito. To start with, his team used a method called liquid chromatography-mass spectrometry (LC-MS) to derive information about the chemical content of a variety of plant organs collected at different developmental stages. The researchers subsequently cross-referenced these against a library of tandem mass spectrometry spectral tags (MS2Ts)—essentially an index of the individual compounds that can be detected in Arabidopsis. By this process, they were able to assign unique MS2Ts to approximately 95% of the molecules detected via LC-MS and subsequently managed to derive structural information for a total of 167 metabolites.

A comparison of the spatial and temporal distributions for these various metabolites with detailed datasets describing gene expression in Arabidopsis allowed Saito and colleagues to obtain new insights into metabolic regulation, revealing several especially complex pathways where levels of a given metabolite were seemingly decoupled from expression levels of the genes involved in its synthesis, suggesting the existence of potentially diverse additional modes of control.

Saito and colleagues were also able to assign roles to previously unknown putative components of biosynthetic pathways. “We found a number of correlations between metabolite peaks and uncharacterized genes,” says Saito. “These are potential targets for discovery of new genes involved in metabolite production.”

This first iteration of AtMetExpress will serve as a foundation for more targeted future investigations, including the exploration of metabolic pathways triggered by the activity of specific plant hormones, and ultimately may lead the way for similar analyses of other plant species with important agricultural or medicinal applications.

The corresponding author for this highlight is based at the Metabolomics Research Group, RIKEN Plant Science Center

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6209
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>