Nanowires from DNA

For millions of years nature has been optimizing DNA – in all living creatures this biomolecule is responsible for storing genetic information. Now a research project supervised by Dr. Jens Müller from the Chair of Bioinorganic Chemistry at TU Dortmund, puts the long chain molecule into a new context.

Detached from its biological origin, artificial DNA double helices were modified in such a way that the evolutionarily optimized biomolecule can also be used as a key structural element for the arrangement of metal ions. There are numerous potential applications of this basic research. With this method, for example, molecular wires or the smallest magnets could be developed to be used in nanotechnology. Moreover, the scientists think about using it as catalysts, in medicine or as sensors.

In the context of the five-year project, the scientists succeeded in developing numerous so-called ”metal-ion-mediated base pairs” . By choosing the DNA sequence – the configuration of the single structural elements – the scientists can precisely influence the characteristics of the artificial “metallized” DNA. That is how, for example, the synthesis of a double helix with 19 consecutive meta-ion-mediated base pairs – the longest metal-modified DNA of this type ever reported – was done.

Within the scope of the Emmy Noether-Program, the project “Novel Metalated Base Pairs and Other Unusual DNA Motifs” has been funded with overall 530.000 Euros since August 2002. The Emmy Noether-Program is intended to support young scientists and enable them to become scientifically independent at an early stage. In this respect the Dortmund project is a total success with one habilitation thesis, two doctoral theses and five diploma theses. In addition to that, the results can be found in eleven publications in science journals.

Media Contact

Ole Luennemann alfa

More Information:

http://www.tu-dortmund.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors