Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles reveal mechanisms of cancer cell growth in whole cells

06.11.2013
Healthy cells are renewed by dividing and dying off, but cell division in cancer cells goes unchecked because natural cell death is suspended.

This happens because too many receptors for the growth factor EGF which are found on the surface of the cell join together to form pairs. These pairs start a signal chain into the cell, culminating in unrestricted growth.


Labeling of the EGFR with gold nanoparticles vizualizes its dimerisation
Source: INM

Now, scientists at the INM – Leibniz Institute for New Materials have for the first time been able to show this pairing in human cancer cells on individual receptors using gold nanoparticles.

The results were recently published in the online journal Scientific Reports.

“It has never before been possible to show the mechanism of pairing in individual receptors in whole cells”, explains Diana Peckys, a human biologist at the INM. “Up to now, biochemical methods in which the cells are either in principle destroyed or only ever receive calculated mean values from the observation of many receptors have been used”, she goes on. “We examined the arrangements of individual receptors in pairs and in smaller groups. This was possible because we were able to show the individual receptors on the intact cell under an electron microscope.”

To do this, researchers marked the growth factor EGF using gold nanoparticles with a diameter of around ten nanometers. At the same time, they worked with a special measuring and preparation technique that makes it possible to examine whole cells in their natural fluid state in the nanometer range under a scanning electron microscope. They used these combined methods with a resolution of three nanometers to for the first time show on a one to one basis that EGF binds to the receptor and form pairs and clusters.

In addition to experimentally proving previous theoretical calculations, the team from the Innovative Electron Microscopy Program Area is now stepping up its work with German cancer researchers. “With our new measuring method, we are keen to focus in the future on investigating how different cancer drugs influence pairing and grouping of the EGFR and similar related receptors. Observing these processes in terms of individual molecules on intact cells opens up new prospects for cancer research”, the electron microscope expert sums up.

Background
All cells in mammalian organisms have receptors for the epidermal growth factor (EGFR). If the related growth factor (EGF - epidermal growth factor) combines with the EGFR receptor, the receptor changes shape so that it can join together with a second receptor to which a growth factor can then also readily bind. Through a complicated signal chain, an activated receptor pair such as this promotes the cell growth that in healthy cells produces normal cell renewal, but if too many of these so-called dimers are formed on the surface of the cell , this stimulates the cells to produce excessive cell division and growth, and this can lead to malignant tumours and metastases.
Original publication
D. Peckys, J.-P. Baudoin, M. Eder, U.Werner, N. de Jonge, “Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy”, Scientific Reports 3 (2013), article number: 2626, doi: 10.1038/srep02626
Contact:
Dr. Diana B. Peckys
INM – Leibniz Institute for New Materials
Innovative Electron Microscopy Program Area
Tel: 0681-9300-389
diana.peckys(at)inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/en/
http://www.leibniz-gemeinschaft.de/en/home/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>