Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Research aids Drug Development

07.11.2008
Scientists at the University of Liverpool have developed a new technology which can dramatically improve the effectiveness of antibacterial treatments.

Drugs with the ability to dissolve have much stronger efficacy, however many drugs are insoluble. In order to compensate, drugs often need to be administered in higher doses.

This increases the possibility of bacteria and other organisms mutating as the high doses make it easier for them to build resistance to the drugs. This leads to treatments becoming obsolete and the need for new medicines to be developed.

Chemists at the University of Liverpool working with IOTA NanoSolutions have now developed a new technology to produce nanoparticles of insoluble drugs that mimic the behaviour and the effectiveness of dissolved drugs.

Nanoparticles are man-made particles manufactured for use in a number of industries including the cosmetic and pharmaceutical industry; they can make materials stronger, lighter and cleaner.

Recent data has shown that in some cases, low concentrations of insoluble drugs in a nanoparticle form can be more active than previously thought, offering the potential to administer drugs in low dosages without reducing the effectiveness of the treatment. The new technology is allowing the scientists to develop new medicines by converting currently available drugs into a nanoparticle form. Antiparastitic drugs to treat malaria are also being developed in collaboration with the Liverpool School of Tropical Medicine.

Professor Steve Rannard, from the Department of Chemistry who is also co-founder and current Chief Scientific Officer of IOTA NanoSolutions, said: “Already our technology has shown the potential to improve a range of current medicines and may lead to treatments that prevent drug resistance. If our approach can deliver new antimalarial treatments, it may help to prevent millions of deaths per year and improve the lives of hundreds of millions of current malaria sufferers.”

This research is published in Nature Nanotechnology.

Charlotte Roberts | alfa
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>