Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Research aids Drug Development

07.11.2008
Scientists at the University of Liverpool have developed a new technology which can dramatically improve the effectiveness of antibacterial treatments.

Drugs with the ability to dissolve have much stronger efficacy, however many drugs are insoluble. In order to compensate, drugs often need to be administered in higher doses.

This increases the possibility of bacteria and other organisms mutating as the high doses make it easier for them to build resistance to the drugs. This leads to treatments becoming obsolete and the need for new medicines to be developed.

Chemists at the University of Liverpool working with IOTA NanoSolutions have now developed a new technology to produce nanoparticles of insoluble drugs that mimic the behaviour and the effectiveness of dissolved drugs.

Nanoparticles are man-made particles manufactured for use in a number of industries including the cosmetic and pharmaceutical industry; they can make materials stronger, lighter and cleaner.

Recent data has shown that in some cases, low concentrations of insoluble drugs in a nanoparticle form can be more active than previously thought, offering the potential to administer drugs in low dosages without reducing the effectiveness of the treatment. The new technology is allowing the scientists to develop new medicines by converting currently available drugs into a nanoparticle form. Antiparastitic drugs to treat malaria are also being developed in collaboration with the Liverpool School of Tropical Medicine.

Professor Steve Rannard, from the Department of Chemistry who is also co-founder and current Chief Scientific Officer of IOTA NanoSolutions, said: “Already our technology has shown the potential to improve a range of current medicines and may lead to treatments that prevent drug resistance. If our approach can deliver new antimalarial treatments, it may help to prevent millions of deaths per year and improve the lives of hundreds of millions of current malaria sufferers.”

This research is published in Nature Nanotechnology.

Charlotte Roberts | alfa
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>