Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanofibers Developed by Technion Researchers May Lead to Scar-Free Healing

13.11.2008
Researchers at the Technion-Israel Institute of Technology have developed a strong, flexible, bio-material that may be used someday to close wounds with minimal scarring and rejection by the immune system.

Spun from a common blood protein, the material could be used to make the thin threads needed for wound sutures, larger dressings for wounds, and other anti-adhesion membranes used in abdominal surgery, according to Technion researchers Eyal Zussman, Arie Admon and their colleagues.

Since it is made entirely from biological material, with no synthetic additives, the material is more likely to integrate with the body's natural tissues and leave less of a scar, which could make it ideal for wound closure after Caesarean surgery or cosmetic procedures, Zussman said.

Dr. Miriam Rafailovich, a materials science and engineering research at the State University of New York at Stony Brook, said the new material is not overly adhesive, which might make it useful in treating burns. "I see all kinds of applications for it where you don't want a dressing to stick to a wound," she noted.

In the journal Biomacromolecules, Zussman and colleagues discuss how they turned the globular protein bovine serum albumin into thick mats using electrospinning, a technique that uses an electrical charge to pull and stretch liquid droplets into nano-sized fibers.

Many researchers have used the technique to spin fibers from organic materials, hoping to mimic the strength and elasticity of natural substances such as spider silk, for example. However, it has been a challenge to spin organic materials into stable threads, making it necessary to spin a blend of artificial and natural molecules.

But these artificial elements are exactly the kind of thing that the body's immune system might reject in wound repair, so the Technion researchers looked for organic molecules that could be spun without additives.

Serum albumin "was selected under the assumption that, being one of the most abundant proteins in the body, nanofibers made from serum albumin would be regarded as being less foreign to the body and therefore less likely to be rejected," Zussman explained.

During electrospinning, certain chemical bonds are broken and re-linked in a new pattern in the globular protein, which gives it stability and flexibility in a linear shape, the researchers discovered.

Most proteins adopt a coiled shape, which scientists attempt to "straighten out" by adding artificial molecules to the protein during electrospinning. "What the Zussman group figured out-the ingenuity of what they did-was to find a way to break the protein's bonds and turn it into a linear polymer" without using additional molecules to force it into a fibrous shape, Rafailovich explained.

The Technion researchers are planning to test their electrospinning technique on other proteins, Zussman said.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>