Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanofibers Developed by Technion Researchers May Lead to Scar-Free Healing

13.11.2008
Researchers at the Technion-Israel Institute of Technology have developed a strong, flexible, bio-material that may be used someday to close wounds with minimal scarring and rejection by the immune system.

Spun from a common blood protein, the material could be used to make the thin threads needed for wound sutures, larger dressings for wounds, and other anti-adhesion membranes used in abdominal surgery, according to Technion researchers Eyal Zussman, Arie Admon and their colleagues.

Since it is made entirely from biological material, with no synthetic additives, the material is more likely to integrate with the body's natural tissues and leave less of a scar, which could make it ideal for wound closure after Caesarean surgery or cosmetic procedures, Zussman said.

Dr. Miriam Rafailovich, a materials science and engineering research at the State University of New York at Stony Brook, said the new material is not overly adhesive, which might make it useful in treating burns. "I see all kinds of applications for it where you don't want a dressing to stick to a wound," she noted.

In the journal Biomacromolecules, Zussman and colleagues discuss how they turned the globular protein bovine serum albumin into thick mats using electrospinning, a technique that uses an electrical charge to pull and stretch liquid droplets into nano-sized fibers.

Many researchers have used the technique to spin fibers from organic materials, hoping to mimic the strength and elasticity of natural substances such as spider silk, for example. However, it has been a challenge to spin organic materials into stable threads, making it necessary to spin a blend of artificial and natural molecules.

But these artificial elements are exactly the kind of thing that the body's immune system might reject in wound repair, so the Technion researchers looked for organic molecules that could be spun without additives.

Serum albumin "was selected under the assumption that, being one of the most abundant proteins in the body, nanofibers made from serum albumin would be regarded as being less foreign to the body and therefore less likely to be rejected," Zussman explained.

During electrospinning, certain chemical bonds are broken and re-linked in a new pattern in the globular protein, which gives it stability and flexibility in a linear shape, the researchers discovered.

Most proteins adopt a coiled shape, which scientists attempt to "straighten out" by adding artificial molecules to the protein during electrospinning. "What the Zussman group figured out-the ingenuity of what they did-was to find a way to break the protein's bonds and turn it into a linear polymer" without using additional molecules to force it into a fibrous shape, Rafailovich explained.

The Technion researchers are planning to test their electrospinning technique on other proteins, Zussman said.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>