Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanofibers Developed by Technion Researchers May Lead to Scar-Free Healing

13.11.2008
Researchers at the Technion-Israel Institute of Technology have developed a strong, flexible, bio-material that may be used someday to close wounds with minimal scarring and rejection by the immune system.

Spun from a common blood protein, the material could be used to make the thin threads needed for wound sutures, larger dressings for wounds, and other anti-adhesion membranes used in abdominal surgery, according to Technion researchers Eyal Zussman, Arie Admon and their colleagues.

Since it is made entirely from biological material, with no synthetic additives, the material is more likely to integrate with the body's natural tissues and leave less of a scar, which could make it ideal for wound closure after Caesarean surgery or cosmetic procedures, Zussman said.

Dr. Miriam Rafailovich, a materials science and engineering research at the State University of New York at Stony Brook, said the new material is not overly adhesive, which might make it useful in treating burns. "I see all kinds of applications for it where you don't want a dressing to stick to a wound," she noted.

In the journal Biomacromolecules, Zussman and colleagues discuss how they turned the globular protein bovine serum albumin into thick mats using electrospinning, a technique that uses an electrical charge to pull and stretch liquid droplets into nano-sized fibers.

Many researchers have used the technique to spin fibers from organic materials, hoping to mimic the strength and elasticity of natural substances such as spider silk, for example. However, it has been a challenge to spin organic materials into stable threads, making it necessary to spin a blend of artificial and natural molecules.

But these artificial elements are exactly the kind of thing that the body's immune system might reject in wound repair, so the Technion researchers looked for organic molecules that could be spun without additives.

Serum albumin "was selected under the assumption that, being one of the most abundant proteins in the body, nanofibers made from serum albumin would be regarded as being less foreign to the body and therefore less likely to be rejected," Zussman explained.

During electrospinning, certain chemical bonds are broken and re-linked in a new pattern in the globular protein, which gives it stability and flexibility in a linear shape, the researchers discovered.

Most proteins adopt a coiled shape, which scientists attempt to "straighten out" by adding artificial molecules to the protein during electrospinning. "What the Zussman group figured out-the ingenuity of what they did-was to find a way to break the protein's bonds and turn it into a linear polymer" without using additional molecules to force it into a fibrous shape, Rafailovich explained.

The Technion researchers are planning to test their electrospinning technique on other proteins, Zussman said.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>