Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Fit-ness: Helping Enzymes Stay Active and Keep in Shape

07.04.2011
Researchers at Rensselaer Polytechnic Institute Discover New Method To Boost Enzymatic Activity

Proteins are critically important to life and the human body. They are also among the most complex molecules in nature, and there is much we still don’t know or understand about them.

One key challenge is the stability of enzymes, a particular type of protein that speeds up, or catalyzes, chemical reactions. Taken out of their natural environment in the cell or body, enzymes can quickly lose their shape and denature. Everyday examples of enzymes denaturing include milk going sour, or eggs turning solid when boiled.

Rensselaer Polytechnic Institute Professor Marc-Olivier Coppens has developed a new technique for boosting the stability of enzymes, making them useful under a much broader range of conditions. Coppens confined lysozyme and other enzymes inside carefully engineered nanoscale holes, or nanopores. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

“Normally, when you put an enzyme on a surface, its activity goes down. But in this study, we discovered that when we put enzymes in nanopores — a highly controlled environment — the enzymatic activity goes up dramatically,” said Coppens, a professor in the Department of Chemical and Biological Engineering at Rensselaer. “The enzymatic activity turns out to be very dependent on the local environment. This is very exciting.”

Results of the study are detailed in the paper, “Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores,” published last month by the journal Physical Chemistry Chemical Physics. The paper may be viewed online at: http://dx.doi.org/10.1039/C0CP02273J

Researchers at Rensselaer and elsewhere have made important discoveries by wrapping enzymes and other proteins around nanomaterials. While this immobilizes the enzyme and often results in high stability and novel properties, the enzyme’s activity decreases as it loses its natural 3-D structure.

Coppens took a different approach, and inserted enzymes inside nanopores. Measuring only 3-4 nanometers (nm) in size, the enzyme lysozyme fits snugly into a nanoporous material with well-controlled pore size between 5 nm and 12 nm. Confined to this compact space, the enzymes have a much harder time unfolding or wiggling around, Coppens said.

The discovery raises many questions and opens up entirely new possibilities related to biology, chemistry, medicine, and nanoengineering, Coppens said. He envisions this technology could be adapted to better control nanoscale environments, as well as increase the activity and selectivity of different enzymes. Looking forward, Coppens and colleagues will employ molecular simulations, multiscale modeling methods, and physical experiments to better understand the fundamental mechanics of confining enzymes inside nanopores.

The study was co-authored by Lung-Ching Sang, a former Rensselaer graduate student in the Department of Chemical and Biological Engineering.

This research was supported by the National Science Foundation, via the Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures at Rensselaer. The project was also supported by the International Center for Materials Nanoarchitectonics of the National Institute for Materials Science, Japan.

Coppens joined Rensselaer in 2006, after serving as professor and chair in physical chemistry and molecular thermodynamics at Delft University of Technology in the Netherlands.

For more information on Coppens’ research at Rensselaer, visit:

http://nice.che.rpi.edu/
http://nice.che.rpi.edu/research.html
For more information on the chemical and biological engineering research at Rensselaer, visit:
http://cbe.rpi.edu/
http://approach.rpi.edu/tag/cheme

Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>