Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole rats may hold clues to surviving stroke

01.12.2009
Blind, nearly hairless, and looking something like toothy, plump, pink fingers, naked mole rats may rank among nature's most maligned creatures, but their unusual physiology endears them to scientists.

Two University of Illinois at Chicago researchers report in the Dec. 9 issue of NeuroReport (now on-line) that adult naked mole rat brain tissue can withstand extreme hypoxia, or oxygen deprivation, for periods exceeding a half-hour -- much longer than brain tissue from other mammals.

The findings may yield clues for better treatment of brain injuries associated with heart attack, stroke and accidents where the brain is starved of vital oxygen.

John Larson, associate professor of physiology in psychiatry, and Thomas Park, professor of biological sciences, studied African naked mole rats -- small rodents that live about six feet underground in big colonies of up to 300 members. The living is tight and the breathing even worse, with the limited air supply high in carbon dioxide and low in oxygen.

The air they breathe is so foul it would be fatal or lead to irreversible brain damage in any other mammal, Larson and Park said.

But naked mole rats studied were found to show systemic hypoxia adaptations, such as in the lungs and blood, as well as neuron adaptations that allow brain cells to function at oxygen and carbon dioxide levels that other mammals cannot tolerate.

"In the most extreme cases, naked mole rat neurons maintain function more than six times longer than mouse neurons after the onset of oxygen deprivation," said Larson.

"We also find it very intriguing that naked mole rat neurons exhibit some electrophysiological properties that suggest that neurons in these animals retain immature characteristics."

All mammal fetuses live in a low-oxygen environment in the womb, and human infants continue to show brain resistance to oxygen deprivation for a brief time into early childhood. But naked mole rats, unlike other mammals, retain this ability into adulthood.

"We believe that the extreme resistance to oxygen deprivation is a result of evolutionary adaptations for surviving in a chronically low-oxygen environment," said Park.

"The trick now will be to learn how naked mole rats have been able to retain infant-like brain protection from low oxygen, so we can use this information to help people who experience temporary loss of oxygen to the brain in situations like heart attacks, stroke or drowning," he said.

Larson said study of the naked mole rat's brain may yield clues for learning the mechanisms that allow longer neuronal survival after such accidents or medical emergencies, which may suggest ways to avoid permanent human brain damage.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>