Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole rats may hold clues to surviving stroke

01.12.2009
Blind, nearly hairless, and looking something like toothy, plump, pink fingers, naked mole rats may rank among nature's most maligned creatures, but their unusual physiology endears them to scientists.

Two University of Illinois at Chicago researchers report in the Dec. 9 issue of NeuroReport (now on-line) that adult naked mole rat brain tissue can withstand extreme hypoxia, or oxygen deprivation, for periods exceeding a half-hour -- much longer than brain tissue from other mammals.

The findings may yield clues for better treatment of brain injuries associated with heart attack, stroke and accidents where the brain is starved of vital oxygen.

John Larson, associate professor of physiology in psychiatry, and Thomas Park, professor of biological sciences, studied African naked mole rats -- small rodents that live about six feet underground in big colonies of up to 300 members. The living is tight and the breathing even worse, with the limited air supply high in carbon dioxide and low in oxygen.

The air they breathe is so foul it would be fatal or lead to irreversible brain damage in any other mammal, Larson and Park said.

But naked mole rats studied were found to show systemic hypoxia adaptations, such as in the lungs and blood, as well as neuron adaptations that allow brain cells to function at oxygen and carbon dioxide levels that other mammals cannot tolerate.

"In the most extreme cases, naked mole rat neurons maintain function more than six times longer than mouse neurons after the onset of oxygen deprivation," said Larson.

"We also find it very intriguing that naked mole rat neurons exhibit some electrophysiological properties that suggest that neurons in these animals retain immature characteristics."

All mammal fetuses live in a low-oxygen environment in the womb, and human infants continue to show brain resistance to oxygen deprivation for a brief time into early childhood. But naked mole rats, unlike other mammals, retain this ability into adulthood.

"We believe that the extreme resistance to oxygen deprivation is a result of evolutionary adaptations for surviving in a chronically low-oxygen environment," said Park.

"The trick now will be to learn how naked mole rats have been able to retain infant-like brain protection from low oxygen, so we can use this information to help people who experience temporary loss of oxygen to the brain in situations like heart attacks, stroke or drowning," he said.

Larson said study of the naked mole rat's brain may yield clues for learning the mechanisms that allow longer neuronal survival after such accidents or medical emergencies, which may suggest ways to avoid permanent human brain damage.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>