Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nailing down a crucial plant signaling system

24.01.2011
Plant biologists have discovered the last major element of the series of chemical signals that one class of plant hormones, called brassinosteroids, send from a protein on the surface of a plant cell to the cell's nucleus.

Although many steps of the pathway were already known, new research from a team including Carnegie's Ying Sun and Zhiyong Wang fills in a missing gap about the mechanism through which brassinosteroids cause plant genes to be expressed.

Their research, which will be published online by Nature Cell Biology on January 23, has implications for agricultural science and, potentially, evolutionary research.

"Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, as well as resistance from external stresses," said Wang. "Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle, including reduced seed germination, irregular growth in the absence of light, dwarfism, and sterility."

Previous research had identified a pathway of chemical signals that starts when a brassinosteroid binds to a receptor on the surface of a plant cell and activates a cascade of activity that consists of adding and removing phosphates from a series of proteins.

When brassinosteroids are not present, a protein in this pathway called BIN2 acts to add phosphates to two other proteins called BZR1 and BZR2, which are part of a special class of proteins called transcription factors. The phosphates inhibit the transcription factors. But when a brassinosteroid binds to the cell-surface receptor, BIN2 is deactivated, and as a result phosphates are removed from the two transcription factors. As a result, BZR1 and BZR2 can enter the cell's nucleus, where they bind directly to DNA molecules and promote a wide variety of gene activity.

Before this new research, the protein that detaches the phosphates and allows BZR1 and BZR2 to work was unknown. Using an extensive array of research techniques, the team was able to prove that a protein called protein phosphatase 2A (PP2A) is responsible.

"We discovered that PP2A is a key component of the brassinosteroid signaling pathway," Wang said. "This discovery completes the core signaling module that relays extracellular brassinosteroids to cue activity in the nucleus."

Further research is needed to determine whether brassinosteroid binding activates PP2A, or just deactivates BIN2, thus allowing PP2A to do this job. Additionally, PP2A is involved in a plant's response to gravity and light, among other things.

This aspect of the brassinosteroid signaling pathway bears some surprising resemblances to signaling pathways found in many members of the animal kingdom. More research could demonstrate details of the evolutionary split between non-protozoan animals and plants.

This work was financially supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy, as well as by NIH, the National Science Foundation of China, and the Herman Frasch Foundation. Some of the researchers were supported by the China Scholarship Council. The UCSF Mass Spectrometry Facility, where some of the research was conducted, is supported by the Biomedical Research Technology Program of the National Centre for Research Resources, NIH.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhiyong Wang | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>