Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation found in dachshund gene may help develop therapies for humans with blindness

11.08.2008
Cone-rod dystrophies (CRDs) are a group of eye diseases caused by progressive loss of the photoreceptor cells in the retina.

In a study published online in Genome Research (www.genome.org), researchers have identified a novel mutation in a gene associated with CRD in dogs, raising hopes that potential therapies can be developed for people suffering from these eye disorders.

CRD represents a heterogeneous set of disorders characterized by progressive loss of retinal cone function. As these photoreceptor cells allow us to see in bright light, loss of cones results in what is commonly known as dayblindness, and can advance to blindness altogether. Thus far, investigations into the genetic basis for autosomal recessively inherited cases of human CRD have turned up only a few genes associated with the disorder, therefore it is likely there are other genes associated with CRD not yet identified.

Eye disorders are one of the most frequently inherited disorders in dogs, however canine CRD is limited to only a few breeds. A gene mutation had previously been associated with CRD in the miniature long-haired dachshund, while a genetic basis for CRD in the standard wire-haired dachshund and the pit bull terrier remained unknown. In this study, scientists led by Dr. Frode Lingaas of the Norwegian School of Veterinary Science and Dr. Kerstin Lindblad-Toh of the Broad Institute of MIT and Harvard have identified a mutation in a novel gene for early-onset CRD in standard wire-haired dachshund by genome-wide association mapping of a dachshund family.

The genome-wide strategy utilized by Lingaas' group isolated a region on chromosome 5 associated with CRD in dachshund. A search for mutations of this area revealed that a portion of the nephronophthisis 4 (NPHP4) gene has been deleted and is likely responsible for recessively inherited CRD in the standard wire-haired dachshund. The finding is particularly interesting, as the human form of NPHP4 has been previously implicated in disease. "This gene has been associated with a combination of kidney and eye disease in human patients," explained Lingaas. "Here, we found a mutation that affects only the eyes, suggesting that this gene might be a candidate for human patients with eye disease only."

The researchers suggest that the protein coded for by the mutant form of NPHP4 may lack a domain that would normally interact with other proteins involved in eye function, yet still retain the region involved in kidney function. "The new information that the NPHP4 gene can be involved in eye diseases only can shed light on the etiology of some low-frequency eye diseases in people where similar mutations may be involved," Lindblad-Toh said.

Lingaas noted that identification of causal mutations for diseases has practical implications for dogs, as genetic tests could be implemented to avoid new cases of the disorder and reduce the frequency of the mutation in the population. Furthermore, this investigation of the genetic basis for CRD in dogs could facilitate the development of treatments for humans.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

Further reports about: CRD Cone-rod dystrophies Genetic Mutation NPHP4 dachshund nephronophthisis

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>