Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Music Is the Engine of New Lab-on-a-chip Device

24.07.2009
Music, rather than electromechanical valves, can drive experimental samples through a lab-on-a-chip in a new system developed at the University of Michigan. This development could significantly simplify the process of conducting experiments in microfluidic devices.

Music, rather than electromechanical valves, can drive experimental samples through a lab-on-a-chip in a new system developed at the University of Michigan. This development could significantly simplify the process of conducting experiments in microfluidic devices.

A paper on the research will be published online in the Proceedings of the National Academy of Sciences the week of July 20.

A lab-on-a-chip, or microfluidic device, integrates multiple laboratory functions onto one chip just millimeters or centimeters in size. The devices allow researchers to experiment on tiny sample sizes, and also to simultaneously perform multiple experiments on the same material. There is hope that they could lead to instant home tests for illnesses, food contaminants and toxic gases, among other advances.

To do an experiment in a microfluidic device today, researchers often use dozens of air hoses, valves and electrical connections between the chip and a computer to move, mix and split pin-prick drops of fluid in the device's microscopic channels and divots.

"You quickly lose the advantage of a small microfluidic system," said Mark Burns, professor and chair of the Department of Chemical Engineering and a professor in the Department of Biomedical Engineering.

"You'd really like to see something the size of an iPhone that you could sneeze onto and it would tell you if you have the flu. What hasn't been developed for such a small system is the pneumatics---the mechanisms for moving chemicals and samples around on the device."

The U-M researchers use sound waves to drive a unique pneumatic system that does not require electromechanical valves. Instead, musical notes produce the air pressure to control droplets in the device. The U-M system requires only one "off-chip" connection.

"This system is a lot like fiberoptics, or cable television. Nobody's dragging 200 separate wires all over your house to power all those channels," Burns said. "There's one cable signal that gets decoded."

The system developed by Burns, chemical engineering doctoral student Sean Langelier, and their collaborators replaces these air hoses, valves and electrical connections with what are called resonance cavities. The resonance cavities are tubes of specific lengths that amplify particular musical notes.

These cavities are connected on one end to channels in the microfluidic device, and on the other end to a speaker, which is connected to a computer. The computer generates the notes, or chords. The resonance cavities amplify those notes and the sound waves push air through a hole in the resonance cavity to their assigned channel. The air then nudges the droplets in the microfluidic device along.

"Each resonance cavity on the device is designed to amplify a specific tone and turn it into a useful pressure," Langelier said. "If I play one note, one droplet moves. If I play a three-note chord, three move, and so on. And because the cavities don't communicate with each other, I can vary the strength of the individual notes within the chords to move a given drop faster or slower."

Burns describes the set-up as the reverse of a bell choir. Rather than ringing a bell to create sound waves in the air, which are heard as music, this system uses music to create sound waves in the device, which in turn, move the experimental droplets.

"I think this is a very clever system," Burns said. "It's a way to make the connections between the microfluidic world and the real world much simpler."

The new system is still external to the chip, but the researchers are working to make it smaller and incorporate it on a microfluidic device. That would be a step closer to a smartphone-sized home flu test.

The paper is called, "Acoustically-driven programmable liquid motion using resonance cavities." Other authors are U-M chemical engineering graduate students Dustin Chang and Ramsey Zeitoun. The research is funded by the National Institutes of Health and the National Science Foundation. The University is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the

For more information:

Mark Burns: www.engin.umich.edu/dept/cheme/people/burns.html
Sean Langelier: www.engin.umich.edu/dept/che/research/burns/people.html#Sean
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at www.engin.umich.edu/.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>