Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How muscle fatigue originates in the head

05.12.2011
Researchers from the University of Zurich have now studied in detail what sportsmen and women know from experience: The head plays a key role in tiring endurance performances.

They have discovered a mechanism in the brain that triggers a reduction in muscle performance during tiring activities and ensures that one’s own physiological limits are not exceeded. For the first time, the study demonstrates empirically that muscle fatigue and changes in the interaction between neuronal structures are linked.

The extent to which we are able to activate our muscles voluntarily depends on motivation and will power or the physical condition and level of fatigue of the muscles, for instance. The latter particularly leads to noticeable and measurable performance impairments. For a long time, the research on muscle fatigue was largely confined to changes in the muscle itself. Now, a joint research project between the University of Zurich and ETH Zurich has shifted the focus to brain research. Headed by neuro-psychologist Kai Lutz from the University of Zurich in collaboration with Urs Boutellier from the Institute of Human Movement Sciences and Sport at ETH Zurich, the researchers discovered neuronal processes for the first time that are responsible for reducing muscle activity during muscle-fatiguing exercise. The third and final part of this series of experiments, which was conducted by Lea Hilty as part of her doctoral thesis, has now been published in the “European Journal of Neuroscience”.

Muscle’s nerve impulses inhibit motoric area in the brain

In the initial study, the researchers showed that nerve impulses from the muscle – much like pain information – inhibit the primary motoric area during a tiring, energy-demanding exercise. They were able to prove this using measurements in which study participants repeated thigh contractions until they could no longer attain the force required. If the same exercise was conducted under narcotization of the spinal chord (spinal anesthesia), thus interrupting the response from the muscle to the primary motoric area, the corresponding fatigue-related inhibition processes became significantly weaker than when the muscle information was intact.

In a second step, using functional magnetic resonance imaging, the researchers were able to localize the brain regions that exhibit an increase in activity shortly before the interruption of a tiring, energy-demanding activity and are thus involved in signalizing the interruption: the thalamus and the insular cortex – both areas which analyze information that indicates a threat to the organism, such as pain or hunger.

Neuronal system has regulating effect on muscle performance

The third study has now shown that the inhibitory influences on motoric activity are actually mediated via the insular cortex: In tests using a bicycle ergometer, the researchers determined that the communication between the insular cortex and the primary motoric area became more intensive as the fatigue progressed. “This can be regarded as evidence that the neuronal system found not only informs the brain, but also actually has a regulating effect on motoric activity,” says Lea Hilty, summing up the current result. And Kai Lutz points to the new research field that now opens up with these results: “The findings are an important step in discovering the role the brain plays in muscle fatigue. Based on these studies, it won’t just be possible to develop strategies to optimize muscular performance, but also specifically investigate reasons for reduced muscular performance in various diseases.” Prolonged reduced physical performance is a symptom that is frequently observed in daily clinical practice. It can also appear as a side effect of certain medication. However, so-called chronic fatigue syndrome is often diagnosed without any apparent cause.

Literature:
Lea Hilty, Lutz Jäncke, Roger Luechinger, Urs Boutellier, and Kai Lutz. Limitation of Physical Performance in a Muscle Fatiguing Handgrip Exercise Is Mediated by Thalamo-Insular Activity. Human Brain Mapping. December 10, 2010. doi: 10.1002/hbm.21177

Lea Hilty, Kai Lutz, Konrad Maurer, Tobias Rodenkirch, Christina M. Spengler, Urs Boutellier, Lutz Jäncke, and Markus Amann. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Experimental Physiology. February 11, 2011. doi: 10.1113/expphysiol.2010.056226

Lea Hilty, Nicolas Langer, Roberto Pascual-Marqui, Urs Boutellier, and Kai Lutz. Fatigue-induced increase in intracortical communication between mid ⁄anterior insular and motor cortex during cycling exercise. European Journal of Neuroscience. November 21, 2011. doi: 10.1111/j.1460-9568.2011.07909.x

Contact:
Dr. Kai Lutz
Department of Psychology
Chair for Neuropsychology
University of Zurich
Tel.: +41 44 635 73 95
E-Mail: Kai.Lutz@uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

Further reports about: ETH Human vaccine insular cortex muscle fatigue nerve impulses

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>