Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle atrophy through thick but not thin

09.06.2009
Ubiquitylating enzyme MuRF1 targets thick fibers in muscle

During desperate times, such as fasting, or muscle wasting that afflicts cancer or AIDS patients, the body cannibalizes itself, atrophying and breaking down skeletal muscle proteins to liberate amino acids.

In a new study published online June 8 and in the June 15, 2009 print issue of the Journal of Cell Biology (www.jcb.org), Shenhav Cohen, Alfred Goldberg, and colleagues show that muscle atrophy is a more ordered process than was previously thought. These researchers find evidence that enzyme MuRF1 selectively degrades the thick filaments in muscle, while bypassing the thin filaments.

We depend on skeletal muscles because they can produce movement, but they serve another purpose too. "Skeletal muscle is a protein reservoir that can be mobilized in times of need," says Goldberg. The structural core of a muscle cell is the myofibril, composed of myosin-containing thick filaments and actin-containing thin filaments. During atrophy, this structure is disassembled, but exactly how was not known. MuRF1, an atrophy-related gene, is a ubiquitin ligase that "ubiquitylates," or tags a protein, by attaching a ubiquitin molecule, marking it for degradation by the cell. It was unclear when and how ubiquitylation was involved in disassembling skeletal muscles. The researchers triggered atrophy in mice containing defective MuRF1 (lacking its RING-finger domain crucial for ubiquitylation). These mutant mice break down less muscle than wild-type mice, and less ubiquitylation takes place in the mutants.

Cohen and colleagues found that MuRF1 targets the thick filament, demolishing various components in a specific order. The researchers hypothesize that removal of certain thick filament components first permits subsequent MuRF1 access to the myosin heavy chain. However, MuRF1 doesn't exert the same power over the thin filament, which began to come apart even when MuRF1 was absent.

"Up to now, people thought the muscle just gets smaller" during atrophy, Goldberg says. Instead, these findings paint a picture of a well-regulated process of degradation and disassembly. This mechanism "allows the muscle to still be a muscle and function," Goldberg says. "Atrophy doesn't just destroy muscle cells, like apoptosis." The results indicate that MuRF1 doesn't have to wait for caspases or calpains to "pre-digest" the myofibril components. The work also bears on the practical question of whether atrophy can be halted or reversed with drugs. "It argues against MuRF1 inhibitors" for this purpose, Goldberg says, because the enzyme is responsible for degrading only some muscle components, whereas others fall victim to other ubiquitin ligases and autophagy. Inhibitors that work upstream to block signals that activate ubiquitin ligases and initiate autophagy are a better bet.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org or visit the JCB press release archive at http://www.eurekalert.org/jrnls/rupress.

Cohen, S., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200901052.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org
http://www.jcb.org

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>