Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle atrophy through thick but not thin

09.06.2009
Ubiquitylating enzyme MuRF1 targets thick fibers in muscle

During desperate times, such as fasting, or muscle wasting that afflicts cancer or AIDS patients, the body cannibalizes itself, atrophying and breaking down skeletal muscle proteins to liberate amino acids.

In a new study published online June 8 and in the June 15, 2009 print issue of the Journal of Cell Biology (www.jcb.org), Shenhav Cohen, Alfred Goldberg, and colleagues show that muscle atrophy is a more ordered process than was previously thought. These researchers find evidence that enzyme MuRF1 selectively degrades the thick filaments in muscle, while bypassing the thin filaments.

We depend on skeletal muscles because they can produce movement, but they serve another purpose too. "Skeletal muscle is a protein reservoir that can be mobilized in times of need," says Goldberg. The structural core of a muscle cell is the myofibril, composed of myosin-containing thick filaments and actin-containing thin filaments. During atrophy, this structure is disassembled, but exactly how was not known. MuRF1, an atrophy-related gene, is a ubiquitin ligase that "ubiquitylates," or tags a protein, by attaching a ubiquitin molecule, marking it for degradation by the cell. It was unclear when and how ubiquitylation was involved in disassembling skeletal muscles. The researchers triggered atrophy in mice containing defective MuRF1 (lacking its RING-finger domain crucial for ubiquitylation). These mutant mice break down less muscle than wild-type mice, and less ubiquitylation takes place in the mutants.

Cohen and colleagues found that MuRF1 targets the thick filament, demolishing various components in a specific order. The researchers hypothesize that removal of certain thick filament components first permits subsequent MuRF1 access to the myosin heavy chain. However, MuRF1 doesn't exert the same power over the thin filament, which began to come apart even when MuRF1 was absent.

"Up to now, people thought the muscle just gets smaller" during atrophy, Goldberg says. Instead, these findings paint a picture of a well-regulated process of degradation and disassembly. This mechanism "allows the muscle to still be a muscle and function," Goldberg says. "Atrophy doesn't just destroy muscle cells, like apoptosis." The results indicate that MuRF1 doesn't have to wait for caspases or calpains to "pre-digest" the myofibril components. The work also bears on the practical question of whether atrophy can be halted or reversed with drugs. "It argues against MuRF1 inhibitors" for this purpose, Goldberg says, because the enzyme is responsible for degrading only some muscle components, whereas others fall victim to other ubiquitin ligases and autophagy. Inhibitors that work upstream to block signals that activate ubiquitin ligases and initiate autophagy are a better bet.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org or visit the JCB press release archive at http://www.eurekalert.org/jrnls/rupress.

Cohen, S., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200901052.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org
http://www.jcb.org

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>