Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multiplexed Morse signals from cells


How many sorts, in how many copies? The biochemical processes that take place in cells require specific molecules to congregate and interact in specific locations. A novel type of high-resolution microscopy developed at the Max Planck Institute for Biochemistry in Martinsried and Harvard University already allows researchers to visualize these molecular complexes and identify their constituents. Now they can also determine the numbers of each molecular species in these structures. Such quantitative information is valuable for the understanding of cellular mechanisms and how they are altered in disease states. The new technique is described in Nature Methods.

To an outside observer major construction sites often look quite chaotic, as hundreds of workers come together in constantly changing combinations, moving back and forth between teams engaged in tasks at different locations. Observing what goes on in biological cells often confuses researchers too, as they try to understand how subcellular operations are organized.

The novel high-resolution microscopy technique qPAINT allows the quantification of single molecules. For the detection of different molecules, laser beams in different wavelength are used.

Maximilian Strauss © MPI of Biochemistry

Even biological macromolecules are so tiny that they can only be visualized with the help of highly sensitive fluorescent markers, usually attached to an antibody that binds specifically to a particular type of molecule.

Ralf Jungmann, who leads a research group devoted to Molecular Imaging and Bionanotechnology at the Max Planck Institute of Biochemistry and the Ludwig Maximilian University Munich, has progressively increased the versatility of this basic method, developing a method which he calls DNA-PAINT. This procedure makes it possible to sequentially visualize multiple cellular molecules and their interactions with high precision.

The flexibility of the method arises from the fact that the fluorescent compound and its target (the bound antibody) do not interact directly. Instead, each is coupled to a short DNA strand, and because their nucleotide sequences are complementary, the two strands fit together like the two halves of a zipper. This process of “hybridization” reveals the position of the target protein. Furthermore, the strength of the interaction between the DNA strands can be adjusted, such that they separate after a certain time, and the fluorescence signal ceases.

Then, the fluorescent label is washed out of the fixed cell and, in a variant of DNA-PAINT called Exchange-PAINT, is replaced by the same fluorophore attached to a different DNA docking sequence, which recognizes its partner strand on a different cellular protein in the same structure.

In this way, one obtains a series of snapshots, each of which originates from a specific component of the same cellular structure. When the individual shots are superimposed, the result is a kind of high-resolution group portrait of the various molecular species that interact with each other and work together to carry out a particular biological process. But that’s not all the technique can do. In order to be able to image biological structures and processes in all their complexity, before joining the MPI for Biochemistry, Jungmann had worked on an extension of the method in the research group led by Peng Yin at Harvard’s Wyss Institute and Harvard Medical School in Boston.

The newly acquired ability to carry out quantitative analyses represents a further important step towards this goal. As Jungmann and his colleagues now report, qPAINT makes it possible for the first time to determine the numbers of each molecular species present in multisubunit complexes. The trick is to adjust the relative affinities of the complementary DNA strands such that the hybridized segments dissociate from one another after a preset time. The single strands can then interact once more, thus inducing a further burst of fluorescence.

The frequency of fluorescence signals in turn serves as a measure of the number of interacting molecules present in the structure of interest. The researchers hope that the novel procedure will find application in many areas of cell biology, not least because it is more economical than other types of high-resolution microscopy. “Knowledge of the numbers of copies of a specific molecule involved in a given biological process is also important in the case of pathological perturbations,” says Jungmann, who is one of two joint first authors of the new study. “In many such cases, the changes that occur are quantitative rather than qualitative in nature.”

Original publication:
R. Jungmann, M. S. Avendaño, M. Dai, J. B. Woehrstein, S. S. Agasti, Z. Feiger, A. Rodal & P. Yin: Quantitative super-resolution imaging with qPAINT using transient. Nature Methods, March 2016
DOI: 10.1038/nmeth.3804

Dr. Ralf Jungmann
Molecular Imaging and Bionanotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824

Weitere Informationen: - homepage max planck institute of biochemistry homepage research group "Molecular Imaging and Bionanotechnology" (Ralf Jungmann)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>