Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiplexed Morse signals from cells

30.03.2016

How many sorts, in how many copies? The biochemical processes that take place in cells require specific molecules to congregate and interact in specific locations. A novel type of high-resolution microscopy developed at the Max Planck Institute for Biochemistry in Martinsried and Harvard University already allows researchers to visualize these molecular complexes and identify their constituents. Now they can also determine the numbers of each molecular species in these structures. Such quantitative information is valuable for the understanding of cellular mechanisms and how they are altered in disease states. The new technique is described in Nature Methods.

To an outside observer major construction sites often look quite chaotic, as hundreds of workers come together in constantly changing combinations, moving back and forth between teams engaged in tasks at different locations. Observing what goes on in biological cells often confuses researchers too, as they try to understand how subcellular operations are organized.


The novel high-resolution microscopy technique qPAINT allows the quantification of single molecules. For the detection of different molecules, laser beams in different wavelength are used.

Maximilian Strauss © MPI of Biochemistry

Even biological macromolecules are so tiny that they can only be visualized with the help of highly sensitive fluorescent markers, usually attached to an antibody that binds specifically to a particular type of molecule.

Ralf Jungmann, who leads a research group devoted to Molecular Imaging and Bionanotechnology at the Max Planck Institute of Biochemistry and the Ludwig Maximilian University Munich, has progressively increased the versatility of this basic method, developing a method which he calls DNA-PAINT. This procedure makes it possible to sequentially visualize multiple cellular molecules and their interactions with high precision.

The flexibility of the method arises from the fact that the fluorescent compound and its target (the bound antibody) do not interact directly. Instead, each is coupled to a short DNA strand, and because their nucleotide sequences are complementary, the two strands fit together like the two halves of a zipper. This process of “hybridization” reveals the position of the target protein. Furthermore, the strength of the interaction between the DNA strands can be adjusted, such that they separate after a certain time, and the fluorescence signal ceases.

Then, the fluorescent label is washed out of the fixed cell and, in a variant of DNA-PAINT called Exchange-PAINT, is replaced by the same fluorophore attached to a different DNA docking sequence, which recognizes its partner strand on a different cellular protein in the same structure.

In this way, one obtains a series of snapshots, each of which originates from a specific component of the same cellular structure. When the individual shots are superimposed, the result is a kind of high-resolution group portrait of the various molecular species that interact with each other and work together to carry out a particular biological process. But that’s not all the technique can do. In order to be able to image biological structures and processes in all their complexity, before joining the MPI for Biochemistry, Jungmann had worked on an extension of the method in the research group led by Peng Yin at Harvard’s Wyss Institute and Harvard Medical School in Boston.

The newly acquired ability to carry out quantitative analyses represents a further important step towards this goal. As Jungmann and his colleagues now report, qPAINT makes it possible for the first time to determine the numbers of each molecular species present in multisubunit complexes. The trick is to adjust the relative affinities of the complementary DNA strands such that the hybridized segments dissociate from one another after a preset time. The single strands can then interact once more, thus inducing a further burst of fluorescence.

The frequency of fluorescence signals in turn serves as a measure of the number of interacting molecules present in the structure of interest. The researchers hope that the novel procedure will find application in many areas of cell biology, not least because it is more economical than other types of high-resolution microscopy. “Knowledge of the numbers of copies of a specific molecule involved in a given biological process is also important in the case of pathological perturbations,” says Jungmann, who is one of two joint first authors of the new study. “In many such cases, the changes that occur are quantitative rather than qualitative in nature.”

Original publication:
R. Jungmann, M. S. Avendaño, M. Dai, J. B. Woehrstein, S. S. Agasti, Z. Feiger, A. Rodal & P. Yin: Quantitative super-resolution imaging with qPAINT using transient. Nature Methods, March 2016
DOI: 10.1038/nmeth.3804

Contact:
Dr. Ralf Jungmann
Molecular Imaging and Bionanotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: jungmann@biochem.mpg.de
www.biochem.mpg.de/jungmann

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/jungmann- homepage research group "Molecular Imaging and Bionanotechnology" (Ralf Jungmann)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>