Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-resistant skin bacteria spreading in hospitals

08.09.2010
Genetically closely related skin bacteria that have developed resistance to several different antibiotics and that can cause intractable care-related infections are found and seem to be spreading within and between hospitals in Sweden. This is established by Micael Widerström in the doctoral dissertation he is defending at Umeå University in Sweden.

Coagulase-negative staphylococci (CNS) are bacteria that belong to the protective bacterial flora on the skin and seldom cause infections in healthy individuals. However, CNS, and especially Staphylococcus epidermidis, are a common cause of care-related infections, in particular infections following various types of prosthetic surgery.

These infections are often difficult to treat, as certain strains of S. epidermidis have become resistant to most antibiotics (multi-resistant), and has a capacity to fasten on and form a so-called biofilm around catheters and inserted prostheses.

In his dissertation work, Micael Widerström found genetically closely related strains of multi-resistant S. epidermidis, in hospital patients from most of the eleven northern European hospitals studied, eight of them in Sweden. These closely related strains could not be found among healthy individuals in the community. The findings indicate that S. epidermidis, which has a special capacity to adapt to hospital environments, seems to be spreading within and between Swedish hospitals.

Current antibiotics and hygiene routines do not seem to prevent these strains from getting a foothold in hospital settings. The mechanisms for how these multi-resistant bacteria spread at our hospitals need to be charted if we are to be able to reduce the risk and cost of care-related infections.

The dissertation also describes another species of coagulase-negative staphylococcus, Staphylococcus saprophyticus. This is a common cause of urinary tract infections that young and middle-aged women contract outside the hospital environment. It is unclear how urinary tract infections caused by S. saprophyticus spread and whether certain genetic variants are especially likely to cause this type of infection. In the study, the same genetic variant of S. saprophyticus was found in urine samples from women in different countries and separated in time by several years. This indicates that certain genetic variants of S. saprophyticus are established as the cause of urinary tract infections and seem to be spreading within and among countries.

For more information, please contact: Micael Widerström, doctoral candidate at the Dept. of Clinical Microbiology, Umeå University, and a physician at the County Hospital in Östersund, at mobile: +46 (0)70-698 19 60 or mikael.widerstrom@jll.se.

Pressofficer Bertil Born; bertil.born@adm.umu.se; +46-703 886 058

Bertil Born | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>