Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MRSA strain gained dominance with help from skin bacteria

Scientists believe they have an explanation for how the most common strain of methicillin-resistant Staphylococcus aureus (MRSA) rapidly rose to prominence.

Research published in mBio®, the online open-access journal of the American Society for Microbiology, suggests that the strain recently acquired a number of genes from common skin bacteria that allow it to grow and thrive on the skin where other strains of MRSA cannot.

"Over the past 15 years, methicillin-resistant Staphylococcus aureus has become a major public health problem. It is likely that adaptations in specific MRSA lineages drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains," says Paul Planet of Columbia University, the lead author on the study.

Since it was first identified in the late 1990s the USA300 strain of MRSA has undergone an extremely rapid expansion across the United States. It is now the predominant cause of community-acquired MRSA skin and soft tissue infections and has been implicated in MRSA outbreaks among professional football teams. The strain is genetically distinguished from other strains by a cluster of genes known as the arginine catabolic mobile element (ACME.)

... more about:
»MRSA »Staphylococcus »microbiology

"Using phylogenetic analysis, we showed that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis (a relatively harmless bacterium typically found on human skin) and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event that coincided with the emergence and spread of this strain" says Planet.

The researchers identified one ACME gene in particular, called speG, that conferred on USA300 strains the ability to withstand high levels of polyamines, compounds produced by the skin that are toxic to other strains of MRSA. Polyamine tolerance also gave MRSA multiple advantages including enhanced biofilm formation, adherence to host tissues and resistance to certain antibiotics, according to the study.

"We suggest that these properties gave USA 300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone," says Planet.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:

Further reports about: MRSA Staphylococcus microbiology

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>